====== YtoKMatrix ======
###
YtoKMatrix($orb$) takes the angular momentum $l$ or the name of a non-relativistic atomic orbital and returns the corresponding matrix to rotate from a basis of spherical harmonics to cubic harmonics. It is also possible to give a list of $l$ numbers or orbital names, in which case the output is a block diagonal matrix with the rotation matrices as entries.
###
===== Input =====
* $orb$ : An integer number, or a list of integer numbers, or a string that can be interpreted as a non-relativistic atomic orbital, or a list or strings.
* Options:
* "addSpin" : bool determining if spin-space is considered in the matrix (resulting in matrices double in size). (Default true)
===== Output =====
* $R$ : Rotation Matrix from a basis of spherical to cubic harmonics.
===== Example =====
==== Input ====
print("")
print("YtoKMatrix(0)")
print(YtoKMatrix(0))
print("")
print("YtoKMatrix(\"s\", {{\"addSpin\",false}})")
print(YtoKMatrix("s", {{"addSpin",false}}))
print("")
print("YtoKMatrix(1)")
print(YtoKMatrix(1))
print("")
print("YtoKMatrix(\"p\")")
print(YtoKMatrix("p"))
print("")
print("YtoKMatrix(2)")
print(YtoKMatrix(2))
print("")
print("YtoKMatrix(\"d\")")
print(YtoKMatrix("d"))
print("")
print("YtoKMatrix({0,1,2}, {{\"addSpin\",false}})")
print(YtoKMatrix({0,1,2}, {{"addSpin",false}}))
print("")
print("YtoKMatrix({\"s\",\"p\",\"d\"}, {{\"addSpin\",false}})")
print(YtoKMatrix({"s","p","d"}, {{"addSpin",false}}))
print("\n\n")
print("A more realistic example")
Orbitals = {"1s","2s","2p"}
Indices, NF = CreateAtomicIndicesDict(Orbitals)
--Some Operator definition on spherical harmonics
op = NewOperator("U", NF, Indices["2p_Up"], Indices["2p_Dn"],{0,1})
print("Operator on a basis of spherical harmonics")
print(op)
opK = Rotate(op, YtoKMatrix(Orbitals))
print("Operator on a basis of cubic harmonics")
print(opK)
==== Result ====
YtoKMatrix(0)
{ { 1 , 0 } ,
{ 0 , 1 } }
YtoKMatrix("s", {{"addSpin",false}})
{ { 1 } }
YtoKMatrix(1)
{ { 0.70710678118655 , 0 , 0 , 0 , -0.70710678118655 , 0 } ,
{ 0 , 0.70710678118655 , 0 , 0 , 0 , -0.70710678118655 } ,
{ (0 + 0.70710678118655 I) , 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 } ,
{ 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , (0 + 0.70710678118655 I) } ,
{ 0 , 0 , 1 , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , 1 , 0 , 0 } }
YtoKMatrix("p")
{ { 0.70710678118655 , 0 , 0 , 0 , -0.70710678118655 , 0 } ,
{ 0 , 0.70710678118655 , 0 , 0 , 0 , -0.70710678118655 } ,
{ (0 + 0.70710678118655 I) , 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 } ,
{ 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , (0 + 0.70710678118655 I) } ,
{ 0 , 0 , 1 , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , 1 , 0 , 0 } }
YtoKMatrix(2)
{ { 0.70710678118655 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0.70710678118655 , 0 } ,
{ 0 , 0.70710678118655 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0.70710678118655 } ,
{ 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 } ,
{ 0 , 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 , 0 } ,
{ 0 , 0 , 0.70710678118655 , 0 , 0 , 0 , -0.70710678118655 , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , 0.70710678118655 , 0 , 0 , 0 , -0.70710678118655 , 0 , 0 } ,
{ (0 + 0.70710678118655 I) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , (0 - 0.70710678118655 I) , 0 } ,
{ 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , (0 - 0.70710678118655 I) } }
YtoKMatrix("d")
{ { 0.70710678118655 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0.70710678118655 , 0 } ,
{ 0 , 0.70710678118655 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0.70710678118655 } ,
{ 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 } ,
{ 0 , 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 , 0 } ,
{ 0 , 0 , 0.70710678118655 , 0 , 0 , 0 , -0.70710678118655 , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , 0.70710678118655 , 0 , 0 , 0 , -0.70710678118655 , 0 , 0 } ,
{ (0 + 0.70710678118655 I) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , (0 - 0.70710678118655 I) , 0 } ,
{ 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , 0 , 0 , 0 , 0 , (0 - 0.70710678118655 I) } }
YtoKMatrix({0,1,2}, {{"addSpin",false}})
{ { 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ,
{ 0 , 0.70710678118655 , 0 , -0.70710678118655 , 0 , 0 , 0 , 0 , 0 } ,
{ 0 , (0 + 0.70710678118655 I) , 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , 0 , 0 } ,
{ 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , 0 , 0.70710678118655 , 0 , 0 , 0 , 0.70710678118655 } ,
{ 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 } ,
{ 0 , 0 , 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 , (0 + 0.70710678118655 I) , 0 } ,
{ 0 , 0 , 0 , 0 , 0 , 0.70710678118655 , 0 , -0.70710678118655 , 0 } ,
{ 0 , 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , (0 - 0.70710678118655 I) } }
YtoKMatrix({"s","p","d"}, {{"addSpin",false}})
{ { 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ,
{ 0 , 0.70710678118655 , 0 , -0.70710678118655 , 0 , 0 , 0 , 0 , 0 } ,
{ 0 , (0 + 0.70710678118655 I) , 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , 0 , 0 } ,
{ 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 } ,
{ 0 , 0 , 0 , 0 , 0.70710678118655 , 0 , 0 , 0 , 0.70710678118655 } ,
{ 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 } ,
{ 0 , 0 , 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 , (0 + 0.70710678118655 I) , 0 } ,
{ 0 , 0 , 0 , 0 , 0 , 0.70710678118655 , 0 , -0.70710678118655 , 0 } ,
{ 0 , 0 , 0 , 0 , (0 + 0.70710678118655 I) , 0 , 0 , 0 , (0 - 0.70710678118655 I) } }
A more realistic example
Operator on a basis of spherical harmonics
Operator: Coulomb Operator
QComplex = 0 (Real==0 or Complex==1 or Mixed==2)
MaxLength = 4 (largest number of product of lader operators)
NFermionic modes = 10 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis)
NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in the one particle basis)
Operator of Length 4
QComplex = 0 (Real==0 or Complex==1)
N = 25 (number of operators of length 4)
C 5 C 4 A 5 A 4 | -3.999999999999999E-02
C 7 C 5 A 7 A 5 | 2.000000000000000E-01
C 6 C 5 A 6 A 5 | 7.999999999999999E-02
C 7 C 4 A 7 A 4 | 7.999999999999999E-02
C 6 C 4 A 6 A 4 | 2.000000000000000E-01
C 9 C 5 A 9 A 5 | 2.000000000000000E-01
C 8 C 5 A 8 A 5 | -3.999999999999999E-02
C 9 C 4 A 9 A 4 | -3.999999999999999E-02
C 8 C 4 A 8 A 4 | 2.000000000000000E-01
C 7 C 6 A 7 A 6 | -1.600000000000000E-01
C 9 C 7 A 9 A 7 | 2.000000000000000E-01
C 8 C 7 A 8 A 7 | 7.999999999999999E-02
C 9 C 6 A 9 A 6 | 7.999999999999999E-02
C 8 C 6 A 8 A 6 | 2.000000000000000E-01
C 9 C 8 A 9 A 8 | -3.999999999999999E-02
C 6 C 5 A 7 A 4 | 1.200000000000000E-01
C 7 C 4 A 6 A 5 | 1.200000000000000E-01
C 8 C 5 A 7 A 6 | -1.200000000000000E-01
C 9 C 4 A 7 A 6 | 1.200000000000000E-01
C 8 C 5 A 9 A 4 | 2.400000000000000E-01
C 9 C 4 A 8 A 5 | 2.400000000000000E-01
C 7 C 6 A 8 A 5 | -1.200000000000000E-01
C 7 C 6 A 9 A 4 | 1.200000000000000E-01
C 8 C 7 A 9 A 6 | 1.200000000000000E-01
C 9 C 6 A 8 A 7 | 1.200000000000000E-01
Operator on a basis of cubic harmonics
Operator: Coulomb Operator
QComplex = 0 (Real==0 or Complex==1 or Mixed==2)
MaxLength = 4 (largest number of product of lader operators)
NFermionic modes = 10 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis)
NBosonic modes = 0 (Number of bosonic modes (phonon modes, ...) in the one particle basis)
Operator of Length 4
QComplex = 0 (Real==0 or Complex==1)
N = 27 (number of operators of length 4)
C 5 C 4 A 5 A 4 | -1.599999999999999E-01
C 7 C 6 A 5 A 4 | -1.200000000000000E-01
C 7 C 4 A 7 A 4 | 7.999999999999997E-02
C 6 C 5 A 7 A 4 | 1.200000000000000E-01
C 7 C 4 A 6 A 5 | 1.200000000000000E-01
C 6 C 5 A 6 A 5 | 7.999999999999997E-02
C 5 C 4 A 7 A 6 | -1.200000000000000E-01
C 7 C 6 A 7 A 6 | -1.599999999999999E-01
C 9 C 5 A 9 A 5 | 1.999999999999999E-01
C 9 C 7 A 9 A 7 | 1.999999999999999E-01
C 8 C 5 A 8 A 5 | 7.999999999999997E-02
C 8 C 7 A 8 A 7 | 7.999999999999997E-02
C 9 C 4 A 9 A 4 | 7.999999999999997E-02
C 9 C 6 A 9 A 6 | 7.999999999999997E-02
C 8 C 4 A 8 A 4 | 1.999999999999999E-01
C 8 C 6 A 8 A 6 | 1.999999999999999E-01
C 7 C 5 A 7 A 5 | 1.999999999999999E-01
C 6 C 4 A 6 A 4 | 1.999999999999999E-01
C 9 C 8 A 9 A 8 | -1.600000000000000E-01
C 8 C 5 A 9 A 4 | 1.200000000000000E-01
C 8 C 7 A 9 A 6 | 1.200000000000000E-01
C 9 C 4 A 8 A 5 | 1.200000000000000E-01
C 9 C 6 A 8 A 7 | 1.200000000000000E-01
C 5 C 4 A 9 A 8 | -1.200000000000000E-01
C 7 C 6 A 9 A 8 | -1.200000000000000E-01
C 9 C 8 A 5 A 4 | -1.200000000000000E-01
C 9 C 8 A 7 A 6 | -1.200000000000000E-01
===== Table of contents =====
{{indexmenu>.#1}}