GetMultipoleBesselIntegral(q,k,f1,f2,n) calculates $\int f_1(r)j_k(qr)f_2(r)\mathrm{d}r$, where $j_k(qr)$ is a spherical Bessel function. The functions f1 and f2 are interpolating functions and the domain of the integral is the domain of interpolating function f1. It uses Gaussian quadrature of order n for each interval between the knots of the interpolating function f1.
description text
-- some example code
text produced as output