The point group D3d is a subgroup of Oh. Many materials of relevance have near cubic symmetry with a small D3d distortion. It thus makes sense to label the states in D3d symmetry according to the states they branch from. For d orbitals the eg orbitals in Oh symmetry branch to orbitals that belong to the eg irreducible representation in D3d symmetry. The t2g orbitals in Oh symmetry branch to an orbital that belongs to the a1g irreducible representation and two that belong to the eg irreducible representation. We label the eg orbitals that descend from the eg irreducible representation in Oh symmetry eg$\sigma$ and the eg orbitals that descend from the t2g irreducible representation eg$\pi$ orbitals. (The mixing is given by the parameter Meg.)
As one can see in the list of supergroups of D3d, there are two different orientations of Oh that are a supergroup of this orientation of D3d. The different orientations of Oh with respect to D3d do however change the definitions of the eg$\pi$ and eg$\sigma$ orbitals. We include three different representations of the orbitals and potentials for each setting of D3d symmetry. The orientation without additional letter takes the tesseral harmonics as a basis. This basis does not relate to the states in Oh symmetry. The orientation with an additional A or B relate to the two different supergroup representations of the Oh point group.
The parameterization B of the orientation Z(x-y) is related to the orientation 11-1z of the Oh pointgroup.
In the D3d Point Group, with orientation Z(x-y)_B there are the following symmetry operations
Operator | Orientation |
---|---|
$\text{E}$ | $\{0,0,0\}$ , |
$C_3$ | $\{0,0,1\}$ , $\{0,0,-1\}$ , |
$C_2$ | $\{1,-1,0\}$ , $\left\{2+\sqrt{3},1,0\right\}$ , $\left\{1,2+\sqrt{3},0\right\}$ , |
$\text{i}$ | $\{0,0,0\}$ , |
$S_6$ | $\{0,0,1\}$ , $\{0,0,-1\}$ , |
$\sigma _d$ | $\{1,-1,0\}$ , $\left\{2+\sqrt{3},1,0\right\}$ , $\left\{1,2+\sqrt{3},0\right\}$ , |
$ $ | $ \text{E} \,{\text{(1)}} $ | $ C_3 \,{\text{(2)}} $ | $ C_2 \,{\text{(3)}} $ | $ \text{i} \,{\text{(1)}} $ | $ S_6 \,{\text{(2)}} $ | $ \sigma_d \,{\text{(3)}} $ |
---|---|---|---|---|---|---|
$ A_{1g} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ |
$ A_{2g} $ | $ 1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ |
$ E_g $ | $ 2 $ | $ -1 $ | $ 0 $ | $ 2 $ | $ -1 $ | $ 0 $ |
$ A_{1u} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ |
$ A_{2u} $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ 1 $ |
$ E_u $ | $ 2 $ | $ -1 $ | $ 0 $ | $ -2 $ | $ 1 $ | $ 0 $ |
$ $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ |
---|---|---|---|---|---|---|
$ A_{1g} $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ |
$ A_{2g} $ | $ A_{2g} $ | $ A_{1g} $ | $ E_g $ | $ A_{2u} $ | $ A_{1u} $ | $ E_u $ |
$ E_g $ | $ E_g $ | $ E_g $ | $ A_{1g}+A_{2g}+E_g $ | $ E_u $ | $ E_u $ | $ A_{1u}+A_{2u}+E_u $ |
$ A_{1u} $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ |
$ A_{2u} $ | $ A_{2u} $ | $ A_{1u} $ | $ E_u $ | $ A_{2g} $ | $ A_{1g} $ | $ E_g $ |
$ E_u $ | $ E_u $ | $ E_u $ | $ A_{1u}+A_{2u}+E_u $ | $ E_g $ | $ E_g $ | $ A_{1g}+A_{2g}+E_g $ |
Any potential (function) can be written as a sum over spherical harmonics. $$V(r,\theta,\phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$ Here $A_{k,m}(r)$ is a radial function and $C^{(m)}_k(\theta,\phi)$ a renormalised spherical harmonics. $$C^{(m)}_k(\theta,\phi)=\sqrt{\frac{4\pi}{2k+1}}Y^{(m)}_k(\theta,\phi)$$ The presence of symmetry induces relations between the expansion coefficients such that $V(r,\theta,\phi)$ is invariant under all symmetry operations. For the D3d Point group with orientation Z(x-y)_B the form of the expansion coefficients is:
$$A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ A(2,0) & k=2\land m=0 \\ (-1+i) A(4,3) & k=4\land m=-3 \\ A(4,0) & k=4\land m=0 \\ (1+i) A(4,3) & k=4\land m=3 \\ -i B(6,6) & k=6\land m=-6 \\ (-1+i) A(6,3) & k=6\land m=-3 \\ A(6,0) & k=6\land m=0 \\ (1+i) A(6,3) & k=6\land m=3 \\ i B(6,6) & k=6\land m=6 \end{cases}$$
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {(-1 + I)*A[4, 3], k == 4 && m == -3}, {A[4, 0], k == 4 && m == 0}, {(1 + I)*A[4, 3], k == 4 && m == 3}, {(-I)*B[6, 6], k == 6 && m == -6}, {(-1 + I)*A[6, 3], k == 6 && m == -3}, {A[6, 0], k == 6 && m == 0}, {(1 + I)*A[6, 3], k == 6 && m == 3}, {I*B[6, 6], k == 6 && m == 6}}, 0]
Akm = {{0, 0, A(0,0)} , {2, 0, A(2,0)} , {4, 0, A(4,0)} , {4,-3, (-1+1*I)*(A(4,3))} , {4, 3, (1+1*I)*(A(4,3))} , {6, 0, A(6,0)} , {6,-3, (-1+1*I)*(A(6,3))} , {6, 3, (1+1*I)*(A(6,3))} , {6,-6, (-I)*(B(6,6))} , {6, 6, (I)*(B(6,6))} }
The operator representing the potential in second quantisation is given as: $$ O = \sum_{n'',l'',m'',n',l',m'} \left\langle \psi_{n'',l'',m''}(r,\theta,\phi) \left| V(r,\theta,\phi) \right| \psi_{n',l',m'}(r,\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi)$. With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. $$ A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle $$ Note the difference between the function $A_{k,m}$ and the parameter $A_{n''l'',n'l'}(k,m)$
we can express the operator as $$ O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$
The table below shows the expectation value of $O$ on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'',l'}(k,m)$ can be complex. Instead of allowing complex parameters we took $A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m)$ (with both A and B real) as the expansion parameter.
$ $ | $ {Y_{0}^{(0)}} $ | $ {Y_{-1}^{(1)}} $ | $ {Y_{0}^{(1)}} $ | $ {Y_{1}^{(1)}} $ | $ {Y_{-2}^{(2)}} $ | $ {Y_{-1}^{(2)}} $ | $ {Y_{0}^{(2)}} $ | $ {Y_{1}^{(2)}} $ | $ {Y_{2}^{(2)}} $ | $ {Y_{-3}^{(3)}} $ | $ {Y_{-2}^{(3)}} $ | $ {Y_{-1}^{(3)}} $ | $ {Y_{0}^{(3)}} $ | $ {Y_{1}^{(3)}} $ | $ {Y_{2}^{(3)}} $ | $ {Y_{3}^{(3)}} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ {Y_{0}^{(0)}} $ | $ \text{Ass}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{\text{Asd}(2,0)}{\sqrt{5}} $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-1}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $ \left(-\frac{1}{3}+\frac{i}{3}\right) \text{Apf}(4,3) $ | $ 0 $ |
$ {Y_{0}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{\left(\frac{1}{3}+\frac{i}{3}\right) \text{Apf}(4,3)}{\sqrt{3}} $ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $ | $ 0 $ | $ 0 $ | $ \frac{\left(\frac{1}{3}-\frac{i}{3}\right) \text{Apf}(4,3)}{\sqrt{3}} $ |
$ {Y_{1}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \left(\frac{1}{3}+\frac{i}{3}\right) \text{Apf}(4,3) $ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ |
$ {Y_{-2}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ \left(\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Add}(4,3) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-1}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ \left(-\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Add}(4,3) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{0}^{(2)}} $ | $ \frac{\text{Asd}(2,0)}{\sqrt{5}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{1}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(\frac{1}{3}+\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Add}(4,3) $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{2}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \left(-\frac{1}{3}-\frac{i}{3}\right) \sqrt{\frac{5}{7}} \text{Add}(4,3) $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-3}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{\left(\frac{1}{3}-\frac{i}{3}\right) \text{Apf}(4,3)}{\sqrt{3}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{7} \text{Aff}(4,3)-\left(\frac{10}{143}-\frac{10 i}{143}\right) \sqrt{\frac{7}{3}} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ | $ \frac{10}{13} i \sqrt{\frac{7}{33}} \text{Bff}(6,6) $ |
$ {Y_{-2}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \left(\frac{1}{3}-\frac{i}{3}\right) \text{Apf}(4,3) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \left(\frac{1}{33}-\frac{i}{33}\right) \sqrt{14} \text{Aff}(4,3)+\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{42} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ |
$ {Y_{-1}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \left(-\frac{1}{33}+\frac{i}{33}\right) \sqrt{14} \text{Aff}(4,3)-\left(\frac{5}{143}-\frac{5 i}{143}\right) \sqrt{42} \text{Aff}(6,3) $ | $ 0 $ |
$ {Y_{0}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{7} \text{Aff}(4,3)-\left(\frac{10}{143}+\frac{10 i}{143}\right) \sqrt{\frac{7}{3}} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \left(\frac{10}{143}-\frac{10 i}{143}\right) \sqrt{\frac{7}{3}} \text{Aff}(6,3)-\left(\frac{1}{11}-\frac{i}{11}\right) \sqrt{7} \text{Aff}(4,3) $ |
$ {Y_{1}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \left(\frac{1}{33}+\frac{i}{33}\right) \sqrt{14} \text{Aff}(4,3)+\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{42} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ |
$ {Y_{2}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ \left(-\frac{1}{3}-\frac{i}{3}\right) \text{Apf}(4,3) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \left(-\frac{1}{33}-\frac{i}{33}\right) \sqrt{14} \text{Aff}(4,3)-\left(\frac{5}{143}+\frac{5 i}{143}\right) \sqrt{42} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $ | $ 0 $ |
$ {Y_{3}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{\left(\frac{1}{3}+\frac{i}{3}\right) \text{Apf}(4,3)}{\sqrt{3}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{10}{13} i \sqrt{\frac{7}{33}} \text{Bff}(6,6) $ | $ 0 $ | $ 0 $ | $ \left(\frac{10}{143}+\frac{10 i}{143}\right) \sqrt{\frac{7}{3}} \text{Aff}(6,3)-\left(\frac{1}{11}+\frac{i}{11}\right) \sqrt{7} \text{Aff}(4,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $ |
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
$ $ | $ {Y_{0}^{(0)}} $ | $ {Y_{-1}^{(1)}} $ | $ {Y_{0}^{(1)}} $ | $ {Y_{1}^{(1)}} $ | $ {Y_{-2}^{(2)}} $ | $ {Y_{-1}^{(2)}} $ | $ {Y_{0}^{(2)}} $ | $ {Y_{1}^{(2)}} $ | $ {Y_{2}^{(2)}} $ | $ {Y_{-3}^{(3)}} $ | $ {Y_{-2}^{(3)}} $ | $ {Y_{-1}^{(3)}} $ | $ {Y_{0}^{(3)}} $ | $ {Y_{1}^{(3)}} $ | $ {Y_{2}^{(3)}} $ | $ {Y_{3}^{(3)}} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ \text{s} $ | $ 1 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ p_x $ | $\color{darkred}{ 0 }$ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ | $ -\frac{1}{\sqrt{2}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_y $ | $\color{darkred}{ 0 }$ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $ \frac{i}{\sqrt{2}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_z $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 1 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ d_{-\text{yz}-\text{xz}+\text{xy}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{i}{\sqrt{6}} $ | $ -\frac{1+i}{\sqrt{6}} $ | $ 0 $ | $ \frac{1-i}{\sqrt{6}} $ | $ -\frac{i}{\sqrt{6}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{(x-y)(x+y+2z)} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{\sqrt{6}} $ | $ \frac{1-i}{\sqrt{6}} $ | $ 0 $ | $ -\frac{1+i}{\sqrt{6}} $ | $ \frac{1}{\sqrt{6}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{2\text{xy}+\text{xz}+\text{yz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{i}{\sqrt{3}} $ | $ \frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} $ | $ 0 $ | $ -\frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} $ | $ -\frac{i}{\sqrt{3}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{(x-y)(x+y-z)} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{\sqrt{3}} $ | $ -\frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{3}} $ | $ 0 $ | $ \frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{3}} $ | $ \frac{1}{\sqrt{3}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{3z^2-r^2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 1 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ f_{(x+y-z)\left\backslash \left(x^2-4\backslash x\backslash y+y^2-2\backslash (x+y)\backslash z-2\left\backslash z^2\right.\right)\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{3}-\frac{i}{3} $ | $ 0 $ | $ 0 $ | $ \frac{\sqrt{5}}{3} $ | $ 0 $ | $ 0 $ | $ -\frac{1}{3}-\frac{i}{3} $ |
$ f_{\left(x^3-\left.5\left\backslash x^2\right.\right\backslash z+\left.5\left\backslash y^2\right.\right\backslash z+x\left\backslash \left(y^2+10\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \left(-\frac{1}{2}+\frac{i}{2}\right) \sqrt{\frac{5}{6}} $ | $ -\frac{1}{2 \sqrt{3}} $ | $ 0 $ | $ \frac{1}{2 \sqrt{3}} $ | $ \left(-\frac{1}{2}-\frac{i}{2}\right) \sqrt{\frac{5}{6}} $ | $ 0 $ |
$ f_{\left(\left.-x^2\right\backslash (y+5\backslash z)-10\backslash x\backslash y\backslash z-y\left\backslash \left(y^2-5\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{\frac{5}{6}} $ | $ -\frac{i}{2 \sqrt{3}} $ | $ 0 $ | $ -\frac{i}{2 \sqrt{3}} $ | $ \left(\frac{1}{2}-\frac{i}{2}\right) \sqrt{\frac{5}{6}} $ | $ 0 $ |
$ f_{\left(5\backslash (x+y)\left\backslash \left(x^2-4\backslash x\backslash y+y^2\right)\right.+\left.12\left\backslash \left(x^2+y^2\right)\right.\right\backslash z-8\left\backslash z^3\right.\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \left(-\frac{1}{6}+\frac{i}{6}\right) \sqrt{5} $ | $ 0 $ | $ 0 $ | $ \frac{2}{3} $ | $ 0 $ | $ 0 $ | $ \left(\frac{1}{6}+\frac{i}{6}\right) \sqrt{5} $ |
$ f_{\left(x^3+\left.x^2\right\backslash z-\left.y^2\right\backslash z+x\left\backslash \left(y^2-2\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{6}} $ | $ -\frac{\sqrt{\frac{5}{3}}}{2} $ | $ 0 $ | $ \frac{\sqrt{\frac{5}{3}}}{2} $ | $ \frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{6}} $ | $ 0 $ |
$ f_{\left(-2\backslash x\backslash y\backslash z+\left.x^2\right\backslash (y-z)+y\left\backslash \left(y^2+y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{\frac{1}{2}+\frac{i}{2}}{\sqrt{6}} $ | $ -\frac{1}{2} i \sqrt{\frac{5}{3}} $ | $ 0 $ | $ -\frac{1}{2} i \sqrt{\frac{5}{3}} $ | $ -\frac{\frac{1}{2}-\frac{i}{2}}{\sqrt{6}} $ | $ 0 $ |
$ f_{(x-y)\left\backslash \left(x^2+4\backslash x\backslash y+y^2\right)\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{2}+\frac{i}{2} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ -\frac{1}{2}+\frac{i}{2} $ |
After rotation we find
$ $ | $ \text{s} $ | $ p_x $ | $ p_y $ | $ p_z $ | $ d_{-\text{yz}-\text{xz}+\text{xy}} $ | $ d_{(x-y)(x+y+2z)} $ | $ d_{2\text{xy}+\text{xz}+\text{yz}} $ | $ d_{(x-y)(x+y-z)} $ | $ d_{3z^2-r^2} $ | $ f_{(x+y-z)\left\backslash \left(x^2-4\backslash x\backslash y+y^2-2\backslash (x+y)\backslash z-2\left\backslash z^2\right.\right)\right.} $ | $ f_{\left(x^3-\left.5\left\backslash x^2\right.\right\backslash z+\left.5\left\backslash y^2\right.\right\backslash z+x\left\backslash \left(y^2+10\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $ f_{\left(\left.-x^2\right\backslash (y+5\backslash z)-10\backslash x\backslash y\backslash z-y\left\backslash \left(y^2-5\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $ f_{\left(5\backslash (x+y)\left\backslash \left(x^2-4\backslash x\backslash y+y^2\right)\right.+\left.12\left\backslash \left(x^2+y^2\right)\right.\right\backslash z-8\left\backslash z^3\right.\right)} $ | $ f_{\left(x^3+\left.x^2\right\backslash z-\left.y^2\right\backslash z+x\left\backslash \left(y^2-2\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $ f_{\left(-2\backslash x\backslash y\backslash z+\left.x^2\right\backslash (y-z)+y\left\backslash \left(y^2+y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $ f_{(x-y)\left\backslash \left(x^2+4\backslash x\backslash y+y^2\right)\right.} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ \text{s} $ | $ \text{Ass}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \frac{\text{Asd}(2,0)}{\sqrt{5}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ p_x $ | $\color{darkred}{ 0 }$ | $ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{1}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{\text{Apf}(4,0)}{3 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{3}} \text{Apf}(4,3) $ | $ 0 $ | $ 0 $ | $ -\sqrt{\frac{3}{35}} \text{Apf}(2,0)+\frac{1}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,0)-\frac{\text{Apf}(4,3)}{3 \sqrt{3}} $ | $ 0 $ | $ 0 $ |
$ p_y $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ -\frac{1}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{\text{Apf}(4,0)}{3 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{3}} \text{Apf}(4,3) $ | $ 0 $ | $ 0 $ | $ -\sqrt{\frac{3}{35}} \text{Apf}(2,0)+\frac{1}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,0)-\frac{\text{Apf}(4,3)}{3 \sqrt{3}} $ | $ 0 $ |
$ p_z $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \sqrt{\frac{3}{35}} \text{Apf}(2,0)+\frac{4}{9} \sqrt{\frac{5}{21}} \text{Apf}(4,0)-\frac{4 \text{Apf}(4,3)}{9 \sqrt{3}} $ | $ 0 $ | $ 0 $ | $ \frac{2}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{8 \text{Apf}(4,0)}{9 \sqrt{21}}+\frac{2}{9} \sqrt{\frac{5}{3}} \text{Apf}(4,3) $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ d_{-\text{yz}-\text{xz}+\text{xy}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Add}(0,0)-\frac{1}{9} \text{Add}(4,0)-\frac{4}{9} \sqrt{\frac{5}{7}} \text{Add}(4,3) $ | $ 0 $ | $ -\frac{1}{7} \sqrt{2} \text{Add}(2,0)+\frac{5}{63} \sqrt{2} \text{Add}(4,0)-\frac{1}{9} \sqrt{\frac{10}{7}} \text{Add}(4,3) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{(x-y)(x+y+2z)} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Add}(0,0)-\frac{1}{9} \text{Add}(4,0)-\frac{4}{9} \sqrt{\frac{5}{7}} \text{Add}(4,3) $ | $ 0 $ | $ -\frac{1}{7} \sqrt{2} \text{Add}(2,0)+\frac{5}{63} \sqrt{2} \text{Add}(4,0)-\frac{1}{9} \sqrt{\frac{10}{7}} \text{Add}(4,3) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{2\text{xy}+\text{xz}+\text{yz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{1}{7} \sqrt{2} \text{Add}(2,0)+\frac{5}{63} \sqrt{2} \text{Add}(4,0)-\frac{1}{9} \sqrt{\frac{10}{7}} \text{Add}(4,3) $ | $ 0 $ | $ \text{Add}(0,0)-\frac{1}{7} \text{Add}(2,0)-\frac{2}{63} \text{Add}(4,0)+\frac{4}{9} \sqrt{\frac{5}{7}} \text{Add}(4,3) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{(x-y)(x+y-z)} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{1}{7} \sqrt{2} \text{Add}(2,0)+\frac{5}{63} \sqrt{2} \text{Add}(4,0)-\frac{1}{9} \sqrt{\frac{10}{7}} \text{Add}(4,3) $ | $ 0 $ | $ \text{Add}(0,0)-\frac{1}{7} \text{Add}(2,0)-\frac{2}{63} \text{Add}(4,0)+\frac{4}{9} \sqrt{\frac{5}{7}} \text{Add}(4,3) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{3z^2-r^2} $ | $ \frac{\text{Asd}(2,0)}{\sqrt{5}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ f_{(x+y-z)\left\backslash \left(x^2-4\backslash x\backslash y+y^2-2\backslash (x+y)\backslash z-2\left\backslash z^2\right.\right)\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \sqrt{\frac{3}{35}} \text{Apf}(2,0)+\frac{4}{9} \sqrt{\frac{5}{21}} \text{Apf}(4,0)-\frac{4 \text{Apf}(4,3)}{9 \sqrt{3}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Aff}(0,0)+\frac{14}{99} \text{Aff}(4,0)+\frac{8}{99} \sqrt{35} \text{Aff}(4,3)+\frac{160 \text{Aff}(6,0)}{1287}-\frac{80 \sqrt{\frac{35}{3}} \text{Aff}(6,3)}{1287}+\frac{40}{117} \sqrt{\frac{7}{33}} \text{Bff}(6,6) $ | $ 0 $ | $ 0 $ | $ \frac{2 \text{Aff}(2,0)}{3 \sqrt{5}}+\frac{2}{99} \sqrt{5} \text{Aff}(4,0)-\frac{2}{99} \sqrt{7} \text{Aff}(4,3)+\frac{70 \sqrt{5} \text{Aff}(6,0)}{1287}+\frac{20 \sqrt{\frac{7}{3}} \text{Aff}(6,3)}{1287}-\frac{20}{117} \sqrt{\frac{35}{33}} \text{Bff}(6,6) $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{\left(x^3-\left.5\left\backslash x^2\right.\right\backslash z+\left.5\left\backslash y^2\right.\right\backslash z+x\left\backslash \left(y^2+10\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $\color{darkred}{ 0 }$ | $ -\frac{1}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{\text{Apf}(4,0)}{3 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{3}} \text{Apf}(4,3) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{30} \text{Aff}(2,0)-\frac{17}{99} \text{Aff}(4,0)-\frac{2}{99} \sqrt{35} \text{Aff}(4,3)+\frac{25}{858} \text{Aff}(6,0)-\frac{10}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ | $ \frac{\text{Aff}(2,0)}{6 \sqrt{5}}+\frac{4}{99} \sqrt{5} \text{Aff}(4,0)-\frac{4}{99} \sqrt{7} \text{Aff}(4,3)-\frac{35}{858} \sqrt{5} \text{Aff}(6,0)-\frac{20}{143} \sqrt{\frac{7}{3}} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ |
$ f_{\left(\left.-x^2\right\backslash (y+5\backslash z)-10\backslash x\backslash y\backslash z-y\left\backslash \left(y^2-5\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{1}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{\text{Apf}(4,0)}{3 \sqrt{21}}+\frac{1}{3} \sqrt{\frac{5}{3}} \text{Apf}(4,3) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{30} \text{Aff}(2,0)-\frac{17}{99} \text{Aff}(4,0)-\frac{2}{99} \sqrt{35} \text{Aff}(4,3)+\frac{25}{858} \text{Aff}(6,0)-\frac{10}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ | $ \frac{\text{Aff}(2,0)}{6 \sqrt{5}}+\frac{4}{99} \sqrt{5} \text{Aff}(4,0)-\frac{4}{99} \sqrt{7} \text{Aff}(4,3)-\frac{35}{858} \sqrt{5} \text{Aff}(6,0)-\frac{20}{143} \sqrt{\frac{7}{3}} \text{Aff}(6,3) $ | $ 0 $ |
$ f_{\left(5\backslash (x+y)\left\backslash \left(x^2-4\backslash x\backslash y+y^2\right)\right.+\left.12\left\backslash \left(x^2+y^2\right)\right.\right\backslash z-8\left\backslash z^3\right.\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{2}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{8 \text{Apf}(4,0)}{9 \sqrt{21}}+\frac{2}{9} \sqrt{\frac{5}{3}} \text{Apf}(4,3) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{2 \text{Aff}(2,0)}{3 \sqrt{5}}+\frac{2}{99} \sqrt{5} \text{Aff}(4,0)-\frac{2}{99} \sqrt{7} \text{Aff}(4,3)+\frac{70 \sqrt{5} \text{Aff}(6,0)}{1287}+\frac{20 \sqrt{\frac{7}{3}} \text{Aff}(6,3)}{1287}-\frac{20}{117} \sqrt{\frac{35}{33}} \text{Bff}(6,6) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{1}{15} \text{Aff}(2,0)+\frac{13}{99} \text{Aff}(4,0)-\frac{8}{99} \sqrt{35} \text{Aff}(4,3)+\frac{125 \text{Aff}(6,0)}{1287}+\frac{80 \sqrt{\frac{35}{3}} \text{Aff}(6,3)}{1287}+\frac{50}{117} \sqrt{\frac{7}{33}} \text{Bff}(6,6) $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{\left(x^3+\left.x^2\right\backslash z-\left.y^2\right\backslash z+x\left\backslash \left(y^2-2\backslash y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $\color{darkred}{ 0 }$ | $ -\sqrt{\frac{3}{35}} \text{Apf}(2,0)+\frac{1}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,0)-\frac{\text{Apf}(4,3)}{3 \sqrt{3}} $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{\text{Aff}(2,0)}{6 \sqrt{5}}+\frac{4}{99} \sqrt{5} \text{Aff}(4,0)-\frac{4}{99} \sqrt{7} \text{Aff}(4,3)-\frac{35}{858} \sqrt{5} \text{Aff}(6,0)-\frac{20}{143} \sqrt{\frac{7}{3}} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{6} \text{Aff}(2,0)-\frac{1}{99} \text{Aff}(4,0)+\frac{2}{99} \sqrt{35} \text{Aff}(4,3)-\frac{115}{858} \text{Aff}(6,0)+\frac{10}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ |
$ f_{\left(-2\backslash x\backslash y\backslash z+\left.x^2\right\backslash (y-z)+y\left\backslash \left(y^2+y\backslash z-4\left\backslash z^2\right.\right)\right.\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\sqrt{\frac{3}{35}} \text{Apf}(2,0)+\frac{1}{3} \sqrt{\frac{5}{21}} \text{Apf}(4,0)-\frac{\text{Apf}(4,3)}{3 \sqrt{3}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{\text{Aff}(2,0)}{6 \sqrt{5}}+\frac{4}{99} \sqrt{5} \text{Aff}(4,0)-\frac{4}{99} \sqrt{7} \text{Aff}(4,3)-\frac{35}{858} \sqrt{5} \text{Aff}(6,0)-\frac{20}{143} \sqrt{\frac{7}{3}} \text{Aff}(6,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{6} \text{Aff}(2,0)-\frac{1}{99} \text{Aff}(4,0)+\frac{2}{99} \sqrt{35} \text{Aff}(4,3)-\frac{115}{858} \text{Aff}(6,0)+\frac{10}{143} \sqrt{\frac{35}{3}} \text{Aff}(6,3) $ | $ 0 $ |
$ f_{(x-y)\left\backslash \left(x^2+4\backslash x\backslash y+y^2\right)\right.} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0)-\frac{10}{13} \sqrt{\frac{7}{33}} \text{Bff}(6,6) $ |
Although the parameters $A_{l'',l'}(k,m)$ uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters $A_{l'',l'}(k,m)$ by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum $l''$ and $l'$.
Click on one of the subsections to expand it or
Click on one of the subsections to expand it or
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C$\infty$v | D$\infty$h |