

DFT calculation of **electronic structure**: an introduction

Application to **K-edge XAS**

Amélie Juhin

Sorbonne Université-CNRS (Paris)

Slide courtesy: Delphine Cabaret

About XANES spectroscopy at the K-edge

probe of structural and electronic properties of materials

local probe: up to 5-10 Å around the absorbing element

1 eV shift coordination number fingerprint

tremendous amount of information needs for calculations

About XANES spectroscopy at the K-edge

probe of structural and electronic properties of materials

K edge: 1s $\rightarrow p$ transitions (mainly)

tremendous amount of information with variable core-hole effects

Modeling of XANES spectroscopy

Basic issue: calculation of the absorption cross section for a material, i.e., a system of N electrons + N_{at} nuclei

$$\sigma(\hbar\omega) = 4\pi^2 \alpha \ \hbar\omega \sum_{i,f} \frac{1}{d_i} |\langle f|\mathcal{O}|i\rangle|^2 \ \delta(E_f - E_i - \hbar\omega)$$

incident x-ray energy

operator of the interaction between x-rays and the system

initial state:

ground state of the system with energy E_i , degenerescence d_i

final state:

excited state of the system of energy E_f

strong e⁻- e⁻ interaction **multielectronic** approach (LFM)

ex : $L_{2,3}$ edges of 3d elements

weak e⁻ - e⁻ interaction

monoelectronic approach

(Density Functional Theory)

ex : K edges

Part 1 Introduction to electronic structure

calculation using DFT

Basic issue

System composed of $N_{ m at}$ atoms:

+ N electrons, mass m, charge q < 0, position r_i (i = 1, ..., N) $N_{\rm at}$ nuclei, mass M_I , charge q_I , position R_I (I = 1, ..., $N_{\rm at}$)

$$H_{\rm syst.} = T_{\rm e} + T_{\rm nucl} + V_{\rm nucl-nucl} + V_{\rm e-nucl} + V_{\rm e-e}$$

$$T_{\rm e} = \frac{-\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2$$

$$V_{\rm e-e} = \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \sum_{i} \sum_{j \neq i} \frac{q^2}{|\mathbf{r}_i - \mathbf{r}_j|}$$

$$V_{\rm nucl-nucl} = \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \sum_{I} \sum_{j \neq i} \frac{q_{I}q_{J}}{|\mathbf{R}_I - \mathbf{R}_J|}$$

Born-Oppenheimer approximation

$$m < M_{\rm I}$$

$$(m / m_{\text{proton}} \approx 1836)$$

Order of magnitude of the velocity ratio

Electron:
$$\frac{1}{2}mv_e^2 = 1\text{Ry} \approx 10 \text{ eV}$$

Nucleus :
$$\frac{1}{2}M_Iv_I^2 \approx \hbar\omega_{vib}~\approx$$
 10 meV

$$\begin{cases} \frac{v_e}{v_{noy}} \approx \sqrt{\frac{M_I}{m}} \frac{10 \mathrm{eV}}{10 \mathrm{meV}} \\ \approx \mathbf{10^3} \end{cases}$$

The nuclear motion is much slower than the electronic motion → separation

The nuclei are considered at fixed positions in the electronic motion study Positions $R_{\rm I}$ \rightarrow parameter

Born-Oppenheimer approximation

Electronic Hamiltonian

$$H_{\rm e}^{\{{\bf R}_I\}} = T_{\rm e} + V_{\rm e-e} + V_{\rm e-nucl} + V_{\rm nucl-nucl}$$
 constant

$$H_e^{\{\mathbf{R}_I\}}|\psi_n^{\{\mathbf{R}_I\}}\rangle = E_n(\{\mathbf{R}_I\})|\psi_n^{\{\mathbf{R}_I\}}\rangle$$

Multielectronic Schrödinger equation

$$H \; \psi_n = E_n \; \psi_n$$
 $e = \frac{|q|}{\sqrt{4\pi g}}$

$$H = \sum_{i} \left(\underbrace{\frac{-\hbar^2 \nabla_i^2}{2m}}_{T^{(i)}} + \underbrace{\sum_{I} \frac{-Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|}}_{V_{\text{nucl}}} \right) + \underbrace{\frac{1}{2} \sum_{i} \underbrace{\sum_{j \neq i} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}}_{V_{\text{e-e}}}$$

$$\psi_n \equiv \psi_n(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N; \mathbf{s}_1, \mathbf{s}_2, ..., \mathbf{s}_N)$$

Multielectronic Schrödinger equation

$$H \psi_n = E_n \psi_n$$

We can solve it for a system of non-interacting electrons!

$$H = \sum_{i=1}^{N} H_{\mathrm{mono}}^{(i)} \quad \text{with} \quad H_{\mathrm{mono}}^{(i)} = T^{(i)} + V_{\mathrm{nucl}}^{(i)}$$

$$H_{
m mono}$$
 $\phi_{lpha}=\epsilon_{lpha}$ ϕ_{lpha} $lpha=1,...,\infty$ spinorbital

 ψ_n : Slater determinant (SD) - 1929 build from N spinorbital functions ϕ_{lpha}

Slater Determinant

Ground state

$$\psi_{gs} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1^{(1)} & \phi_2^{(1)} & \dots & \phi_N^{(1)} \\ \phi_1^{(2)} & \phi_2^{(2)} & \dots & \phi_N^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1^{(N)} & \phi_2^{(N)} & \dots & \phi_N^{(N)} \end{vmatrix} \qquad E_{gs} = \sum_{i=1}^N \epsilon_i$$

$$E_{\rm gs} = \sum_{i=1}^{N} \epsilon_i$$

Properties:

- antisymmetric
- Pauli exclusion principle satisfied

Multielectronic Schrödinger equation

solution

$$H \psi_n = E_n \psi_n$$

$$H = \sum_{i} \left(\underbrace{\frac{-\hbar^2 \nabla_i^2}{2m}}_{T^{(i)}} + \underbrace{\sum_{I} \frac{-Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|}}_{V_{\text{nucl}}} \right) + \underbrace{\frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}}_{V_{\text{e-e}}}$$

$$\psi_n \equiv \psi_n(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N; \mathbf{s}_1, \mathbf{s}_2, ..., \mathbf{s}_N)$$

The Slater determinants form a **basis** in the N-electrons Hilbert space

 ψ_n : Linear combination of an **infinite number** of Slater determinants configuration interaction ("brute force")

$$C_{\alpha_{\max}}^{N} = \frac{\alpha_{\max}!}{N!(\alpha_{\max}-N)!} \quad N = 5 \quad \begin{array}{l} \alpha_{\max} = 10 \implies & 252 \text{ SD} \\ \alpha_{\max} = 20 \implies & 15,504 \text{ SD} \\ \alpha_{\max} = 50 \implies 2,118,760 \text{ SD} \end{array} \quad N = 20 \quad \alpha_{\max} = 30 \implies 3,004,015 \text{ SD}$$

Mean-field approximation

Non-interacting electrons Exact solution : SD Mean-field approximation Approximative solutions

Interacting electrons

Exact solution : ∞ LC of SD

Exact multilelectronic Hamiltonian

$$H = \sum_{i} \left[T^{(i)} + V_{\text{nucl}}^{(i)} \right] + \underbrace{\frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}}_{V_{\text{e-e}}}$$

Effective multielectronic Hamiltonian: mean-field Hamiltonian

Mean-field approximation

Monoelectronic Schrödinger solved self-consistently (SCF)

$$\left[\frac{-\hbar^2 \nabla^2}{2m} + V_{\text{nucl}}(\mathbf{r}) + V_{[\rho]}^{\text{eff}}(\mathbf{r})\right] \phi_i^{\text{eff}}(\mathbf{r}) = \epsilon_i^{\text{eff}} \ \phi_i^{\text{eff}}(\mathbf{r})$$

with
$$\langle \phi_i^{
m eff} | \phi_j^{
m eff}
angle = \delta_{ij}$$

$$\rho(\mathbf{r}) = \sum_{i=1}^{N} |\phi_i^{\text{eff}}(\mathbf{r})|^2$$

Mean-field methods: examples

Hartree (H)

Hartree-Fock (HF)

Density Functional Theory (DFT)

Hartree (H) - 1927

$$\left[\frac{-\hbar^2 \nabla^2}{2m} + V_{\text{nucl}}(\mathbf{r}) + V_{[\rho]}^{\text{eff}}(\mathbf{r})\right] \phi_i^{\text{eff}}(\mathbf{r}) = \epsilon_i^{\text{eff}} \phi_i^{\text{eff}}(\mathbf{r})$$

$$V_{\rm H}(\mathbf{r}) = e^2 \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

Coulomb interaction between one electron and the electron density

$$\frac{-\hbar^2 \nabla^2}{2m} \phi_i^{\text{eff}}(\mathbf{r}) + V_{\text{nucl}}(\mathbf{r}) \phi_i^{\text{eff}}(\mathbf{r}) + e^2 \sum_{j=1}^{N} \int \frac{|\phi_j^{\text{eff}}(\mathbf{r}')|^2}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' \phi_i^{\text{eff}}(\mathbf{r}) = \epsilon_i^{\text{eff}} \phi_i^{\text{eff}}(\mathbf{r})$$

includes a **self-interaction** term (if i = j)

Hartree multielectronic wave function productof monoelectronicwave functions

Pauli exclusion principle exchange not taken into account

Hartree-Fock (HF) - 1935

- **exchange included**: the multielectronic wave function as a (unique) SD
- **additional term** that depends on the spin state and the antisymmetric character of the SD:

$$-\sum_{j=1}^{N} \delta_{s_i s_j} \int \frac{\phi_j^{\text{eff}}(\mathbf{r}')^* \phi_i^{\text{eff}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' \ \phi_j^{\text{eff}}(\mathbf{r})$$

strictly compensates the self-interaction term when electrons i and j have the same spin state

BUT no correlation between electrons with opposite spins

Correlation energy: difference between the exact total energy of N-electrons system and the total energy obtained using HF

Density functional theory (DFT): definition

exact theory

for systems of N interacting electrons

within an external potential

$$H = \underbrace{\sum_{i} \frac{-\hbar^{2} \nabla_{i}^{2}}{2m}}_{T} + \underbrace{\sum_{i} V_{\text{nucl}}(\mathbf{r}_{i})}_{V^{\text{ext}}(\mathbf{r})} + \underbrace{\frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}}_{V_{\text{e-e}}}$$

$$H \psi_n = E_n \psi_n$$

$$\psi_n \equiv \psi_n(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N; \mathbf{s}_1, \mathbf{s}_2, ..., \mathbf{s}_N)$$

DFT: Hohenberg and Kohn theorems (1964)

The (non-degenerate) ground state electron density uniquely determines (to a constant) the external potential $\rho_{gs}(\mathbf{r}) \longrightarrow V^{ext}(\mathbf{r})$ (and thus all the properties of the system).

$$ho(\mathbf{r})$$
 basic variable

There is a universal density functional $F[\rho]$, not depending explicitly on $V^{\text{ext}}(\mathbf{r})$, defined as:

$$F[
ho] = T[
ho] + V_{
m e-e}[
ho]$$
 with $\int
ho({f r}) \ {
m d}{f r} = N$

DFT: Hohenberg and Kohn (1964)

Total energy
$$E \equiv E[\rho] = F[\rho] + \int V^{\rm ext}({\bf r}) \rho({\bf r}) \; {
m d}{\bf r}$$

Exact theory **but**

$$F[\rho] = T[\rho] + V_{e-e}[\rho] = ???$$

question 1

Hohenberg - Kohn theorems valid for any N-electrons system

also valid for N non-interacting electrons ($V_{
m e-e}$ = 0)

Kohn – Sham ansatz

We can find an external potential $V_{\rm KS}({f r})$ for a **fictitious** system of non-interacting electrons, giving the same ground state electron density as the **real** system

$$V_{\rm KS}(\mathbf{r}) = ???$$

question 2

Kohn-Sham fictitious system:

system of N non-interacting electrons,

in an external potential $V_{
m KS}({f r}),$

which gives the same gs electron density as the real system

Ground state: SD build from N orbitals (monoelectronic)

electron density

$$\rho(\mathbf{r}) = \sum_{i=1}^{N} |\phi_i^{\text{KS}}(\mathbf{r})|^2$$

Kinetic energy of the fictitious system

$$T_s[\rho] = \frac{-\hbar^2}{2m} \sum_{i=1}^{N} \int \phi_i^{\text{KS}}(\mathbf{r})^* \nabla^2 \phi_i^{\text{KS}}(\mathbf{r}) d\mathbf{r}$$

(indice s : « single particle »)

$$F[\rho] = T[\rho] + V_{e-e}[\rho] = T_s[\rho] + V_{e-e}[\rho] + (T[\rho] - T_s[\rho])$$

What we can write as a functional of the electron density in $V_{
m e-e}$:

Hartree energy:
$$E_{\rm H}[\rho] = \frac{e^2}{2} \int \frac{\rho(\mathbf{r})\rho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} \; \mathrm{d}\mathbf{r} \; \mathrm{d}\mathbf{r'}$$

$$F[\rho] = T_{s}[\rho] + V_{\text{e-e}}[\rho] + (T[\rho] - T_{s}[\rho])$$

$$= T_{s}[\rho] + E_{\text{H}}[\rho] + (T[\rho] - T_{s}[\rho] + V_{\text{e-e}}[\rho] - E_{\text{H}}[\rho])$$

$$E_{\text{xc}}[\rho]$$

exchange and correlation energy

we partially answered question 1!

Total energy

$$E[\rho] = T_s[\rho] + V_{\rm H}[\rho] + V_{\rm xc}[\rho] + \int V^{\rm ext}(\mathbf{r})\rho(\mathbf{r}) d\mathbf{r}$$

minimization

Ground state total energy

variational principle applied to $E[\rho]$ with respect to KS orbitals with the constraint:

$$\int \phi_i^{\text{KS}}(\mathbf{r})^* \ \phi_j^{\text{KS}}(\mathbf{r}) d\mathbf{r} = \delta_{ij}$$

$$\left(\frac{-\hbar^2 \nabla^2}{2m} + V_{\rm H}(\mathbf{r}) + V_{\rm xc}(\mathbf{r}) + V^{\rm ext}(\mathbf{r})\right) \phi_{\alpha}^{\rm KS}(\mathbf{r}) = \epsilon_{\alpha}^{\rm KS} \phi_{\alpha}^{\rm KS}(\mathbf{r}) \tag{2}$$

exchange and correlation potential

$$V_{xc} = \frac{\delta E_{xc}}{\delta \rho(\mathbf{r})}$$

Kohn-Sham equations

$$\left(\frac{-\hbar^2 \nabla^2}{2m} + V_{\rm H}(\mathbf{r}) + V_{\rm xc}(\mathbf{r}) + V^{\rm ext}(\mathbf{r})\right) \phi_{\alpha}^{\rm KS}(\mathbf{r}) = \epsilon_{\alpha}^{\rm KS} \phi_{\alpha}^{\rm KS}(\mathbf{r}) \tag{2}$$

Schrödinger equations of the fictitious system

$$\left(\frac{-\hbar^2 \nabla^2}{2m} + V^{KS}(\mathbf{r})\right) \phi_{\alpha}^{KS}(\mathbf{r}) = \epsilon_{\alpha}^{KS} \phi_{\alpha}^{KS}(\mathbf{r}) \tag{1}$$

Kohn – Sham potential

$$V_{\mathrm{KS}}(\mathbf{r}) = V_{\mathrm{H}}(\mathbf{r}) + V_{\mathrm{xc}}(\mathbf{r}) + V^{\mathrm{ext}}(\mathbf{r})$$

We **partially** answered question 2!

ground state: self-consistent field (SCF) resolution of the Kohn – Sham equations

$$\left(\frac{-\hbar^2 \nabla^2}{2m} + V_{\rm H}(\mathbf{r}) + V_{\rm xc}(\mathbf{r}) + V^{\rm ext}(\mathbf{r})\right) \phi_{\alpha}^{\rm KS}(\mathbf{r}) = \epsilon_{\alpha}^{\rm KS} \phi_{\alpha}^{\rm KS}(\mathbf{r})$$

Exact theory:

A $V_{
m xc}$ potential that **compensates** the approximations introduced by the mean-field approaches **necessarily** exist!

In practice:

different forms of exchange-correlation functionals

DFT exact theory useless

approximate theory widely used

DFT: exchange and correlation functionals

The Local Density Approximation (LDA)

$$E_{
m xc}^{
m LDA} \equiv \int \epsilon_{
m xc} [
ho({f r})] \;
ho({f r}) {
m d}{f r}$$
 exchange - correlation energy for a particle in

a homogeneous electron gas (with density ρ)

In the LDA, DFT is still **exact** for an homogeneous electron gas.

DFT: exchange and correlation functionals

Generalized Gardient Approximation (GGA)

$$E_{
m xc}^{
m GGA} \equiv \int \epsilon_{
m xc} [
ho({f r}), {f ec
abla}
ho({f r})] \;
ho({f r}) {
m d}{f r}$$
 the density gradient at ${f r}$ is taken into account

Various parameterizations

example: the **PBE** functional J.P. **P**erdew, K. **B**urke & M. **E**rnzerhof « *Generalized Gradient Approximation Made Simple* » *Phys. Rev. Lett.*, 77:3865 (**1996**).

DFT: exchange and correlation functionals

Hybrid functionals (H-GGA)

combine the **exchange correlation** obtained by using **GGA** methods with a given proportion of the **exchange** described by **Hartree-Fock**

The most used: **B3LYP** (Becke - 3 parameters - Lee, Yang, Parr)

$$E_{\rm xc}^{\rm B3LYP} = E_{\rm xc}^{\rm LDA} + a_0 (E_{\rm x}^{\rm HF} - E_{x}^{\rm LDA}) + a_x (E_{\rm x}^{\rm GGA} - E_{x}^{\rm LDA}) + a_c (E_{\rm c}^{\rm GGA} - E_{\rm c}^{\rm LDA})$$

1st step

DFT: SCF cycle

DFT: softwares

DMol3

Solid state physics and quantum chemistry

Abinit	EXCITING	ParaGauss
ADF	Fireball	PARATEC
AIMPRO	FLEUR	PARSEC
Augmented Spherical Wave	GAMESS (UK)	PC GAMESS
Atomistix Toolkit	GAMESS (US)	PLATO
CADPAC	GAUSSIAN	Parallel Quantum Solutions
CASTEP	GPAW	PWscf (Quantum Espresso)
CP2K	JAGUAR	Q-Chem
CPMD	MOLCAS	SIESTA
CRYSTAL	MOLPRO	Socorro
DACAPO	MPQC	Spartan
DALTON	NWChem	SPR-KKR
deMon2K	OpenMX	TURBOMOLE
DFT++	ORCA	VASP

non-exhaustive list

WIEN2k

cluster

no periodicity constraint (amorphous and crystalline materials)

suited to molecules

Basis to expand the Kohn-Sham orbitals

Plane waves

Pseudopotentials

Mixed basis

atomic spheres: LC of radial functions × spherical harmonics

interstitial region: plane waves LAPW

Atomic orbitals

Gaussians LCAO

ORCA

Muffin-tin orbitals

spherical waves LMTO, multiple scattering

Solid state physics and quantum chemistry

ParaGauss EXCITING Abinit PARATEC **Fireball ADF**

PARSEC **FLFUR AIMPRO**

PC GAMESS GAMESS (UK) Augmented Spherical Wave

PLATO GAMESS (US) **Atomistix Toolkit**

Parallel Quantum Solutions **GAUSSIAN CADPAC**

PWscf (Quantum Espresso) **GPAW CASTEP**

Q-Chem **JAGUAR** CP2K SIESTA **MOLCAS CPMD**

Socorro **MOLPRO CRYSTAL**

MPQC Spartan **DACAPO** SPR-KKR **NWChem DALTON**

TURBOMOLE deMon2K OpenMX

ORCA VASP DFT++

WIEN2k DMol3

non-exhaustive list

http://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software

Part 2 Introduction to the calculation of X-ray absorption spectra

X-ray Absorption Near-Edge Structure

Near-Edge X-ray Absorption Fine Structure

XANES modeling

Basic issue: calculation of the absorption cross section for a material, i.e., a system of N electrons + N_{at} nuclei

$$\sigma(\hbar\omega) = 4\pi^2 \alpha \ \hbar\omega \sum_{i,f} \frac{1}{d_i} |\langle f|\mathcal{O}|i\rangle|^2 \ \delta(E_f - E_i - \hbar\omega)$$

incident x-ray energy

final state:

excited state of the system of energy E_f

operator of the interaction between x-rays and the system

initial state:

ground state of the system with energy E_i , degenerescence d_i

strong e⁻- e⁻ interaction **multielectronic** approach

ex : $L_{2.3}$ edges of 3d elements

weak e⁻ - e⁻ interaction monoelectronic approach (Density Functional Theory)

ex : K edges

Interaction operator between x-rays and electrons

incident X-ray beam: electromagnetic wave treated as a plane-wave $\,e^{i{f k}\cdot{f r}}$

k: wave vector

 $\hat{arepsilon}$: polarization direction

$$e^{i\mathbf{k}\cdot\mathbf{r}} = 1 + i\mathbf{k}\cdot\mathbf{r} + \dots$$

$$\mathcal{O} = \sum_{i} \hat{\varepsilon} \cdot \mathbf{r}_{i} + \frac{\mathrm{i}}{2} \sum_{i} \hat{\varepsilon} \cdot \mathbf{r}_{i} \, \mathbf{k} \cdot \mathbf{r}_{i}$$

electric dipole transitions (E1)

$$\Delta \ell = \pm 1$$

majority electronic transitions

electric quadrupole transitions (E2)

$$\Delta \ell = \pm 2$$

observable in the *K* pre-edge of 3*d* transition elements

Interaction operator between x-rays and electrons

Electric dipole (E1) transitions : $\Delta \ell = \pm 1$

Initial State q	uantum numbers	Edge	final state symmetry
1	0	K	р
2	0	<i>L</i> ₁	р
2	1	L _{2,3}	s+d
3	0	M ₁	p
3	1	M _{2,3}	s+d
3	2	M _{4,5}	p+f

 L_2 photon energy

photon energy

K or L_1

delocalised final state (weak electron repulsion) : p

monoelectronic theories (DFT)

localized final state (strong electron): 3d, 4f

multielectronic theories (multiplets)

XANES and DFT

For *K* edges:

monoelectronic empty state (KS) calculated with a **1s core-hole** in the electronic configuration of the absorbing atom

XANES and DFT: the calculation codes

2 types

1- Those written to calculate core-level spectra

cluster, real space

2- The electronic structure codes, in which a post SCF-process code was added to calculate core-level spectra

periodic boundary conditions, reciprocal space

Note: muffin-tin (MT) potential

XANES and DFT: the calculation codes

2 types

1- Those written to calculate core-level spectra

cluster, real space

at the beginning: multiple scattering (no self-consistency, *muffin-tin* potential) continuum, feff, icxones,....

at the end of the 90's: finite differences method with fdmnes

currently: fdmnes, feff9

2- The electronic structure codes, in which a post SCF-process code was added to calculate core-level spectra

periodic boundary conditions, reciprocal space

Wien2k, CASTEP, Quantum-Espresso (XSpectra), ...

XANES and DFT: periodic boundary conditions and core hole

With codes using periodic boundary conditions (for crystals), we have to avoid spurious interaction of the excited atom with its periodically repeated images.

2x2

supercell

Large interaction

Weak interaction

- atom with a core-hole
- atom without a core-hole

To restore neutrality:

- (i) Negative background charge
- ii) Excited electron in conduction band

XANES and DFT: periodic boundary conditions and core hole

Si K edge in α -quartz

unit cell

$$a = 4.91$$
Å, $c = 5.40$ Å

without core-hole

1×1×1 supercell

= unit cell with 1 core-hole 1 Si* 2 Si 6 O

interaction between core-holes

2×2×2 supercell

a = 9.82Å, c = 10.80Å

convergence

XANES and DFT: the drawbacks

well identified

- DFT is dedicated to the calculation of **ground state properties** but *used here for the modeling of excited states...*
 - possible underestimation of the excitation energies
- Static modeling of the core-hole-electron interaction through the supercell approach or within a cluster of atoms
- Exchange and correlation functional is not energy-dependent
- inelastic losses not calculated, the convolution factor is a parameter

XANES and beyond DFT

- GW + Bethe-Salpeter equation (BSE)
 - Shirley and coll.
 - OCEAN interface
 - Olovsson, Puschnig, Ambrosch-Draxl, Lakowski: LAPW

- **TD-DFT** (real-space approaches)
 - > FDMNES
 - Quantum-Chemistry codes: Orca, ADF, Q-chem, ...

3d elements in octahedral site

TiO₂ rutile, Ti site: centrosymmetric

pre-edge : E2 + non local E1

single-particle picture

peak A1

local E2 transition 1s \longrightarrow 3d t_{2g}

peak A2

local E2 transition 1s \longrightarrow 3d e_g

non-local E1 transition $1s \longrightarrow p$ hybrid. $3d t_{2g}$ (neighb.)

peak A3

non-local E1 transition $1s \longrightarrow p$ hybrid. $3d e_g$ (neighb.)

Cabaret et al. Phys. Chem. Chem. Phys. 12:5619 (2010)

TiO₂ rutile, Ti site: centrosymmetric

pre-edge : E2 + non local E1

A1 calc. at too high energy!

WHY?

Cabaret *et al.* Phys. Chem. Chem. Phys. **12**:5619 (2010)

TiO₂ rutile, Ti site: centrosymmetric

pre-edge : E2 + non local E1

A1 calc. at too high energy!

The 1s core-hole is not attractive enough...

How to improve?

TiO₂ rutile, Ti site: centrosymmetric

pre-edge : E2 + non local E1

Bethe-Salpeter equation

Shirley, J. Electr. Spectr. Rel. Phenom. 136:77 (2004)

Cr3+ in octahedral site

$Ca_3Al_2(SiO_4)_3:V^{3+}$, V site: centrosymmetric

pre-edge : E2

single-particle picture

Energy (eV)

Three E2 peaks (at 2eV too high energy...)
Origin?

Cabaret et al. Phys. Chem. Chem. Phys. 12:5619 (2010)

MbCO protein, complex Fe site geometry

single-particle picture

$$\begin{array}{c|c} 3d^6 & & & e_g \\ \hline LS & & & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow \\ \end{array} t_{2g}$$

2 peaks essentially E1, but

- at too high energy peak
- A2 too intense

peak A1

 $1s \longrightarrow p_z - 3d_z^2$ mixing local E1

peak A2

 $1s \longrightarrow p_z$ weakly mixed with 3d hybridized with π^* of CO

off-site E1

Angular dependence of core hole screening in LiCoO₂

Electronic structure poorly described in GGA

Better described using Hubbard parameter (U) on Co 3d states

LiCoO₂: the Co K pre-edge

Best agreement is obtained when including U and the 1s core hole

LiCoO₂: the Co K pre-edge

pre-edge: E2 + nonlocal E1

Peak α : 1s \rightarrow 3d (Co*)

Peak β : 1s \rightarrow 4p + O(2p) + Co (3d) n.n. in plane

Peak γ : 1s \rightarrow 4p + O(2p) + Li (2p)+Co (3d) n.n. out of plane

Summary

Inherent drawbacks of DFT-LDA/GGA for XANES calculation

- electronic repulsion modeling
- core hole-electron interaction modeling
 - E2 and E1 transitions toward 3d (abs) systematically at too high energy

 $3d^{0}$ (TiO₂) ~ **0.5 eV** reduced to 0 using BSE of E. Shirley

 $3d^6$ LS (MbCO, FeS₂) ~ **0.8 eV**

3d³ (Cr-spinel, emerald) 1 ~eV

 $3d^5$ LS (MbCN) ~ **1.7 eV**

 $3d^3$ (ruby) and $3d^2$ (V-grossular) **2** ~eV

GGA+U reduces $2 \text{ eV} \longrightarrow 1 \text{ eV}$ for $3d^8$ (NiO) Gougoussis et al. PRB **79**:045118 (2008) **2.4 eV** \longrightarrow **1.7 eV** for $3d^6$ LS (LiCoO₂) Juhin et al. PRB **81**:115115 (2010)

TDDFT+hybrid functionals in Fe complexes: DeBeer et al. J.Phys.Chem.A 112:12936 (2008)

Summary

Inherent drawbacks of DFT-LDA/GGA for XANES calculation

- electronic repulsion modeling
- core hole-electron interaction modeling
 - E2 and E1 transitions toward 3d (abs) systematically at too high energy

However, DFT in LDA/GGA is useful!

- number of pre-edge peaks well reproduced
- relative intensities and positions in rather good agreement with experiment
- single-particle description of transitions with
 - ➤ E1/E2 character
 - degree of local and non-local hybridization
 - > spin polarization
- improved with adding U (NiO, LiCoO₂, ...)