Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
documentation:language_reference:functions:createfluorescenceyield [2016/10/10 09:41] – external edit 127.0.0.1documentation:language_reference:functions:createfluorescenceyield [2018/05/12 22:50] (current) Maurits W. Haverkort
Line 4: Line 4:
 //CreateFluorescenceYield($O_1$,$O_2$,$O_3$,$\psi$)// calculates  //CreateFluorescenceYield($O_1$,$O_2$,$O_3$,$\psi$)// calculates 
 \begin{equation} \begin{equation}
-\frac{\mathrm{i}}{\pi}\int \langle \psi | O_2^{\dagger} \frac{1}{(\omega - \mathrm{i} \Gamma/2 + E_0 - O_1^{\dagger})} O_3^{\dagger} O_3\frac{1}{(\omega + \mathrm{i} \Gamma/2 + E_0 - O_1)} O_2 | \psi \rangle,+\langle \psi | O_2^{\dagger} \frac{1}{(\omega - \mathrm{i} \Gamma/2 + E_0 - O_1^{\dagger})} O_3^{\dagger} O_3\frac{1}{(\omega + \mathrm{i} \Gamma/2 + E_0 - O_1)} O_2 | \psi \rangle,
 \end{equation} \end{equation}
 with $E_0 = \langle \psi | O_1 | \psi \rangle$. The spectrum is returned as a spectrum object. Please note that fluorescence yield is the expectation value of an Hermitian operator. The returned spectrum is thus completely real. Possible options are: with $E_0 = \langle \psi | O_1 | \psi \rangle$. The spectrum is returned as a spectrum object. Please note that fluorescence yield is the expectation value of an Hermitian operator. The returned spectrum is thus completely real. Possible options are:
Print/export