Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
documentation:language_reference:objects:responsefunction:functions:calculatehybridizationfunction [2024/12/24 00:19] Maurits W. Haverkortdocumentation:language_reference:objects:responsefunction:functions:calculatehybridizationfunction [2025/03/05 15:14] (current) Maurits W. Haverkort
Line 3: Line 3:
  
 ### ###
-Responsefunction.CalculateHybridizationFunction(G0,Sigma) calculates the interacting impurity bath Green's function. Given a lattice with local Green's function $G_0(\omega)$ and a local self energy $\Sigma(\omega)$. The full Green's function then is $G(\omega) = G_0(\omega-\Sigma(\omega))$. If we want to add a self energy on all sites, except for the site we are looking at we get $$G_{Bath} = \frac{1}{G_0(\omega-\Sigma(\omega))^{-1} \Sigma(\omega)}$$ This Green's function can be used to define the hybridisation function of an Anderson impurity model representing a lattice. This is useful for the DMFT approximation where we define a lattice model with local interactions on all lattice sites. We replace the interactions on all sites but one by a local self energy. +Responsefunction.CalculateHybridizationFunction(G0,Sigma) calculates the interacting impurity bath Green's function. Given a lattice with local Green's function $G_0(\omega)$ and a local self energy $\Sigma(\omega)$. The full Green's function then is $G(\omega) = G_0(\omega-\Sigma(\omega))$. If we want to add a self energy on all sites, except for the site we are looking at we get $$G_{Bath} = \frac{1}{G_0(\omega-\Sigma(\omega))^{-1} \Sigma(\omega)}$$ This Green's function can be used to define the hybridisation function of an Anderson impurity model representing a lattice. This is useful for the DMFT approximation where we define a lattice model with local interactions on all lattice sites. We replace the interactions on all sites but one by a local self energy. 
 ### ###
  
Print/export