Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
physics_chemistry:orbitals:y [2016/10/03 23:00] – created Maurits W. Haverkort | physics_chemistry:orbitals:y [2017/02/23 09:45] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | {{indexmenu_n> | ||
+ | ====== Spherical Harmonic (Y) ====== | ||
+ | ~~NOTOC~~ | ||
+ | ;;# | ||
+ | {{ : | ||
+ | ;;# | ||
+ | |||
+ | ### | ||
+ | The spherical harmonics are defined as | ||
+ | $$ | ||
+ | Y_l^{(m)} = \frac{\sqrt{2 l+1}}{2 \sqrt{\pi }} \sqrt{\frac{(l-m)!}{(l+m)!}} e^{i m \phi } P_l^{(m)}(\cos (\theta )), | ||
+ | $$ | ||
+ | with $l$ the angular momentum and $m$ the z projection of the angular momentum, $-l \leq m\leq l$. $P_l^{(m)}$ are the associated Legendre polynomials. For positive $m$ these are defined in terms of the unassociated Legendre polynomials as: | ||
+ | $$ | ||
+ | \begin{align} | ||
+ | P_l^{(m)}(x) & = (-1)^m(1-x^2)^{m/ | ||
+ | & | ||
+ | \end{align} | ||
+ | $$ | ||
+ | using in the second line that: | ||
+ | $$ | ||
+ | P_l(x)=\frac{1}{2^l l!}\frac{d^l}{dx^l} (x^2-1)^l. | ||
+ | $$ | ||
+ | For negative $m$ the associated Legendre polynomials are defined as: | ||
+ | $$ | ||
+ | P_l^{(-m)}(x) = (-1)^m \frac{(l-m)!}{(l+m)!} P_l^{(m)}(x). | ||
+ | $$ | ||
+ | We thus include the // | ||
+ | ### | ||
+ | |||
+ | ### | ||
+ | The following table shows the spherical harmonics up to $l=6$. We list both the explicit function in terms of the angular coordinates $\theta$ and $\phi$ as well as the function in terms of the directional cosines $x$, $y$ and $z$. Using a right hand coordinate system the relation is: $x=\cos(\phi)\sin(\theta)$, | ||
+ | ### | ||
+ | |||
+ | |||
+ | ---- | ||
+ | ---- | ||
+ | ===== $l=0$ ===== | ||
+ | ==== $m_l=0$ ==== | ||
+ | $$ | ||
+ | Y_{0}^{(0)}=\frac{1}{2 \sqrt{\pi }}\\ | ||
+ | \phantom{Y_{0}^{(0)}}=\frac{1}{2 \sqrt{\pi }} | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ---- | ||
+ | ---- | ||
+ | ===== $l=1$ ===== | ||
+ | ==== $m_l=-1$ ==== | ||
+ | $$ | ||
+ | Y_{1}^{(-1)}=\frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{-i \phi } \sin (\theta )\\ | ||
+ | \phantom{Y_{1}^{(-1)}}=\frac{1}{2} \sqrt{\frac{3}{2 \pi }} (x-i y) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=0$ ==== | ||
+ | $$ | ||
+ | Y_{1}^{(0)}=\frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta )\\ | ||
+ | \phantom{Y_{1}^{(0)}}=\frac{1}{2} \sqrt{\frac{3}{\pi }} z | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=1$ ==== | ||
+ | $$ | ||
+ | Y_{1}^{(1)}=-\frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{i \phi } \sin (\theta )\\ | ||
+ | \phantom{Y_{1}^{(1)}}=-\frac{1}{2} \sqrt{\frac{3}{2 \pi }} (x+i y) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ---- | ||
+ | ---- | ||
+ | ===== $l=2$ ===== | ||
+ | ==== $m_l=-2$ ==== | ||
+ | $$ | ||
+ | Y_{2}^{(-2)}=\frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta )\\ | ||
+ | \phantom{Y_{2}^{(-2)}}=\frac{1}{4} \sqrt{\frac{15}{2 \pi }} (x-i y)^2 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-1$ ==== | ||
+ | $$ | ||
+ | Y_{2}^{(-1)}=\frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{-i \phi } \sin (\theta ) \cos (\theta )\\ | ||
+ | \phantom{Y_{2}^{(-1)}}=\frac{1}{2} \sqrt{\frac{15}{2 \pi }} z (x-i y) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=0$ ==== | ||
+ | $$ | ||
+ | Y_{2}^{(0)}=\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{2}^{(0)}}=-\frac{1}{4} \sqrt{\frac{5}{\pi }} \left(x^2+y^2-2 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=1$ ==== | ||
+ | $$ | ||
+ | Y_{2}^{(1)}=-\frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{i \phi } \sin (\theta ) \cos (\theta )\\ | ||
+ | \phantom{Y_{2}^{(1)}}=-\frac{1}{2} \sqrt{\frac{15}{2 \pi }} z (x+i y) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=2$ ==== | ||
+ | $$ | ||
+ | Y_{2}^{(2)}=\frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{2 i \phi } \sin ^2(\theta )\\ | ||
+ | \phantom{Y_{2}^{(2)}}=\frac{1}{4} \sqrt{\frac{15}{2 \pi }} (x+i y)^2 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ---- | ||
+ | ---- | ||
+ | ===== $l=3$ ===== | ||
+ | ==== $m_l=-3$ ==== | ||
+ | $$ | ||
+ | Y_{3}^{(-3)}=\frac{1}{8} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \sin ^3(\theta )\\ | ||
+ | \phantom{Y_{3}^{(-3)}}=\frac{1}{8} \sqrt{\frac{35}{\pi }} (x-i y)^3 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-2$ ==== | ||
+ | $$ | ||
+ | Y_{3}^{(-2)}=\frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \cos (\theta )\\ | ||
+ | \phantom{Y_{3}^{(-2)}}=\frac{1}{4} \sqrt{\frac{105}{2 \pi }} z (x-i y)^2 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-1$ ==== | ||
+ | $$ | ||
+ | Y_{3}^{(-1)}=\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{-i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{3}^{(-1)}}=-\frac{1}{8} \sqrt{\frac{21}{\pi }} (x-i y) \left(x^2+y^2-4 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=0$ ==== | ||
+ | $$ | ||
+ | Y_{3}^{(0)}=\frac{1}{4} \sqrt{\frac{7}{\pi }} \left(5 \cos ^3(\theta )-3 \cos (\theta )\right)\\ | ||
+ | \phantom{Y_{3}^{(0)}}=\frac{1}{4} \sqrt{\frac{7}{\pi }} z \left(2 z^2-3 \left(x^2+y^2\right)\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=1$ ==== | ||
+ | $$ | ||
+ | Y_{3}^{(1)}=-\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{3}^{(1)}}=\frac{1}{8} \sqrt{\frac{21}{\pi }} (x+i y) \left(x^2+y^2-4 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=2$ ==== | ||
+ | $$ | ||
+ | Y_{3}^{(2)}=\frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \cos (\theta )\\ | ||
+ | \phantom{Y_{3}^{(2)}}=\frac{1}{4} \sqrt{\frac{105}{2 \pi }} z (x+i y)^2 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=3$ ==== | ||
+ | $$ | ||
+ | Y_{3}^{(3)}=-\frac{1}{8} \sqrt{\frac{35}{\pi }} e^{3 i \phi } \sin ^3(\theta )\\ | ||
+ | \phantom{Y_{3}^{(3)}}=-\frac{1}{8} \sqrt{\frac{35}{\pi }} (x+i y)^3 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ---- | ||
+ | ---- | ||
+ | ===== $l=4$ ===== | ||
+ | ==== $m_l=-4$ ==== | ||
+ | $$ | ||
+ | Y_{4}^{(-4)}=\frac{3}{16} \sqrt{\frac{35}{2 \pi }} e^{-4 i \phi } \sin ^4(\theta )\\ | ||
+ | \phantom{Y_{4}^{(-4)}}=\frac{3}{16} \sqrt{\frac{35}{2 \pi }} (x-i y)^4 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-3$ ==== | ||
+ | $$ | ||
+ | Y_{4}^{(-3)}=\frac{3}{8} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \cos (\theta )\\ | ||
+ | \phantom{Y_{4}^{(-3)}}=\frac{3}{8} \sqrt{\frac{35}{\pi }} z (x-i y)^3 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-2$ ==== | ||
+ | $$ | ||
+ | Y_{4}^{(-2)}=\frac{3}{8} \sqrt{\frac{5}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \left(7 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{4}^{(-2)}}=-\frac{3}{8} \sqrt{\frac{5}{2 \pi }} (x-i y)^2 \left(x^2+y^2-6 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-1$ ==== | ||
+ | $$ | ||
+ | Y_{4}^{(-1)}=\frac{3}{8} \sqrt{\frac{5}{\pi }} e^{-i \phi } \sin (\theta ) \cos (\theta ) \left(7 \cos ^2(\theta )-3\right)\\ | ||
+ | \phantom{Y_{4}^{(-1)}}=-\frac{3}{8} \sqrt{\frac{5}{\pi }} z (x-i y) \left(3 \left(x^2+y^2\right)-4 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=0$ ==== | ||
+ | $$ | ||
+ | Y_{4}^{(0)}=\frac{3 \left(35 \cos ^4(\theta )-30 \cos ^2(\theta )+3\right)}{16 \sqrt{\pi }}\\ | ||
+ | \phantom{Y_{4}^{(0)}}=\frac{-72 z^2 \left(x^2+y^2\right)+9 \left(x^2+y^2\right)^2+24 z^4}{16 \sqrt{\pi }} | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=1$ ==== | ||
+ | $$ | ||
+ | Y_{4}^{(1)}=-\frac{3}{8} \sqrt{\frac{5}{\pi }} e^{i \phi } \sin (\theta ) \cos (\theta ) \left(7 \cos ^2(\theta )-3\right)\\ | ||
+ | \phantom{Y_{4}^{(1)}}=\frac{3}{8} \sqrt{\frac{5}{\pi }} z (x+i y) \left(3 \left(x^2+y^2\right)-4 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=2$ ==== | ||
+ | $$ | ||
+ | Y_{4}^{(2)}=\frac{3}{8} \sqrt{\frac{5}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \left(7 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{4}^{(2)}}=-\frac{3}{8} \sqrt{\frac{5}{2 \pi }} (x+i y)^2 \left(x^2+y^2-6 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=3$ ==== | ||
+ | $$ | ||
+ | Y_{4}^{(3)}=-\frac{3}{8} \sqrt{\frac{35}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \cos (\theta )\\ | ||
+ | \phantom{Y_{4}^{(3)}}=-\frac{3}{8} \sqrt{\frac{35}{\pi }} z (x+i y)^3 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=4$ ==== | ||
+ | $$ | ||
+ | Y_{4}^{(4)}=\frac{3}{16} \sqrt{\frac{35}{2 \pi }} e^{4 i \phi } \sin ^4(\theta )\\ | ||
+ | \phantom{Y_{4}^{(4)}}=\frac{3}{16} \sqrt{\frac{35}{2 \pi }} (x+i y)^4 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ---- | ||
+ | ---- | ||
+ | ===== $l=5$ ===== | ||
+ | ==== $m_l=-5$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(-5)}=\frac{3}{32} \sqrt{\frac{77}{\pi }} e^{-5 i \phi } \sin ^5(\theta )\\ | ||
+ | \phantom{Y_{5}^{(-5)}}=\frac{3}{32} \sqrt{\frac{77}{\pi }} (x-i y)^5 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-4$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(-4)}=\frac{3}{16} \sqrt{\frac{385}{2 \pi }} e^{-4 i \phi } \sin ^4(\theta ) \cos (\theta )\\ | ||
+ | \phantom{Y_{5}^{(-4)}}=\frac{3}{16} \sqrt{\frac{385}{2 \pi }} z (x-i y)^4 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-3$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(-3)}=\frac{1}{32} \sqrt{\frac{385}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \left(9 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{5}^{(-3)}}=-\frac{1}{32} \sqrt{\frac{385}{\pi }} (x-i y)^3 \left(x^2+y^2-8 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-2$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(-2)}=\frac{1}{8} \sqrt{\frac{1155}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \cos (\theta ) \left(3 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{5}^{(-2)}}=-\frac{1}{8} \sqrt{\frac{1155}{2 \pi }} z (x-i y)^2 \left(x^2+y^2-2 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-1$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(-1)}=\frac{1}{16} \sqrt{\frac{165}{2 \pi }} e^{-i \phi } \sin (\theta ) \left(21 \cos ^4(\theta )-14 \cos ^2(\theta )+1\right)\\ | ||
+ | \phantom{Y_{5}^{(-1)}}=\frac{1}{16} \sqrt{\frac{165}{2 \pi }} (x-i y) \left(-12 z^2 \left(x^2+y^2\right)+\left(x^2+y^2\right)^2+8 z^4\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=0$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(0)}=\frac{1}{16} \sqrt{\frac{11}{\pi }} \left(63 \cos ^5(\theta )-70 \cos ^3(\theta )+15 \cos (\theta )\right)\\ | ||
+ | \phantom{Y_{5}^{(0)}}=\frac{1}{16} \sqrt{\frac{11}{\pi }} z \left(-40 z^2 \left(x^2+y^2\right)+15 \left(x^2+y^2\right)^2+8 z^4\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=1$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(1)}=-\frac{1}{16} \sqrt{\frac{165}{2 \pi }} e^{i \phi } \sin (\theta ) \left(21 \cos ^4(\theta )-14 \cos ^2(\theta )+1\right)\\ | ||
+ | \phantom{Y_{5}^{(1)}}=-\frac{1}{16} \sqrt{\frac{165}{2 \pi }} (x+i y) \left(-12 z^2 \left(x^2+y^2\right)+\left(x^2+y^2\right)^2+8 z^4\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=2$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(2)}=\frac{1}{8} \sqrt{\frac{1155}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \cos (\theta ) \left(3 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{5}^{(2)}}=-\frac{1}{8} \sqrt{\frac{1155}{2 \pi }} z (x+i y)^2 \left(x^2+y^2-2 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=3$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(3)}=-\frac{1}{32} \sqrt{\frac{385}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \left(9 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{5}^{(3)}}=\frac{1}{32} \sqrt{\frac{385}{\pi }} (x+i y)^3 \left(x^2+y^2-8 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=4$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(4)}=\frac{3}{16} \sqrt{\frac{385}{2 \pi }} e^{4 i \phi } \sin ^4(\theta ) \cos (\theta )\\ | ||
+ | \phantom{Y_{5}^{(4)}}=\frac{3}{16} \sqrt{\frac{385}{2 \pi }} z (x+i y)^4 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=5$ ==== | ||
+ | $$ | ||
+ | Y_{5}^{(5)}=-\frac{3}{32} \sqrt{\frac{77}{\pi }} e^{5 i \phi } \sin ^5(\theta )\\ | ||
+ | \phantom{Y_{5}^{(5)}}=-\frac{3}{32} \sqrt{\frac{77}{\pi }} (x+i y)^5 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ---- | ||
+ | ---- | ||
+ | ===== $l=6$ ===== | ||
+ | ==== $m_l=-6$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(-6)}=\frac{1}{64} \sqrt{\frac{3003}{\pi }} e^{-6 i \phi } \sin ^6(\theta )\\ | ||
+ | \phantom{Y_{6}^{(-6)}}=\frac{1}{64} \sqrt{\frac{3003}{\pi }} (x-i y)^6 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-5$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(-5)}=\frac{3}{32} \sqrt{\frac{1001}{\pi }} e^{-5 i \phi } \sin ^5(\theta ) \cos (\theta )\\ | ||
+ | \phantom{Y_{6}^{(-5)}}=\frac{3}{32} \sqrt{\frac{1001}{\pi }} z (x-i y)^5 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-4$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(-4)}=\frac{3}{32} \sqrt{\frac{91}{2 \pi }} e^{-4 i \phi } \sin ^4(\theta ) \left(11 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{6}^{(-4)}}=-\frac{3}{32} \sqrt{\frac{91}{2 \pi }} (x-i y)^4 \left(x^2+y^2-10 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-3$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(-3)}=\frac{1}{32} \sqrt{\frac{1365}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \cos (\theta ) \left(11 \cos ^2(\theta )-3\right)\\ | ||
+ | \phantom{Y_{6}^{(-3)}}=-\frac{1}{32} \sqrt{\frac{1365}{\pi }} z (x-i y)^3 \left(3 \left(x^2+y^2\right)-8 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-2$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(-2)}=\frac{1}{64} \sqrt{\frac{1365}{\pi }} e^{-2 i \phi } \sin ^2(\theta ) \left(33 \cos ^4(\theta )-18 \cos ^2(\theta )+1\right)\\ | ||
+ | \phantom{Y_{6}^{(-2)}}=\frac{1}{64} \sqrt{\frac{1365}{\pi }} (x-i y)^2 \left(-16 z^2 \left(x^2+y^2\right)+\left(x^2+y^2\right)^2+16 z^4\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=-1$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(-1)}=\frac{1}{16} \sqrt{\frac{273}{2 \pi }} e^{-i \phi } \sin (\theta ) \cos (\theta ) \left(33 \cos ^4(\theta )-30 \cos ^2(\theta )+5\right)\\ | ||
+ | \phantom{Y_{6}^{(-1)}}=\frac{1}{16} \sqrt{\frac{273}{2 \pi }} z (x-i y) \left(-20 z^2 \left(x^2+y^2\right)+5 \left(x^2+y^2\right)^2+8 z^4\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=0$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(0)}=\frac{1}{32} \sqrt{\frac{13}{\pi }} \left(231 \cos ^6(\theta )-315 \cos ^4(\theta )+105 \cos ^2(\theta )-5\right)\\ | ||
+ | \phantom{Y_{6}^{(0)}}=\frac{1}{32} \sqrt{\frac{13}{\pi }} \left(-120 z^4 \left(x^2+y^2\right)+90 z^2 \left(x^2+y^2\right)^2-5 \left(x^2+y^2\right)^3+16 z^6\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=1$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(1)}=-\frac{1}{16} \sqrt{\frac{273}{2 \pi }} e^{i \phi } \sin (\theta ) \cos (\theta ) \left(33 \cos ^4(\theta )-30 \cos ^2(\theta )+5\right)\\ | ||
+ | \phantom{Y_{6}^{(1)}}=-\frac{1}{16} \sqrt{\frac{273}{2 \pi }} z (x+i y) \left(-20 z^2 \left(x^2+y^2\right)+5 \left(x^2+y^2\right)^2+8 z^4\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=2$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(2)}=\frac{1}{64} \sqrt{\frac{1365}{\pi }} e^{2 i \phi } \sin ^2(\theta ) \left(33 \cos ^4(\theta )-18 \cos ^2(\theta )+1\right)\\ | ||
+ | \phantom{Y_{6}^{(2)}}=\frac{1}{64} \sqrt{\frac{1365}{\pi }} (x+i y)^2 \left(-16 z^2 \left(x^2+y^2\right)+\left(x^2+y^2\right)^2+16 z^4\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=3$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(3)}=-\frac{1}{32} \sqrt{\frac{1365}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \cos (\theta ) \left(11 \cos ^2(\theta )-3\right)\\ | ||
+ | \phantom{Y_{6}^{(3)}}=\frac{1}{32} \sqrt{\frac{1365}{\pi }} z (x+i y)^3 \left(3 \left(x^2+y^2\right)-8 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=4$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(4)}=\frac{3}{32} \sqrt{\frac{91}{2 \pi }} e^{4 i \phi } \sin ^4(\theta ) \left(11 \cos ^2(\theta )-1\right)\\ | ||
+ | \phantom{Y_{6}^{(4)}}=-\frac{3}{32} \sqrt{\frac{91}{2 \pi }} (x+i y)^4 \left(x^2+y^2-10 z^2\right) | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=5$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(5)}=-\frac{3}{32} \sqrt{\frac{1001}{\pi }} e^{5 i \phi } \sin ^5(\theta ) \cos (\theta )\\ | ||
+ | \phantom{Y_{6}^{(5)}}=-\frac{3}{32} \sqrt{\frac{1001}{\pi }} z (x+i y)^5 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | ==== $m_l=6$ ==== | ||
+ | $$ | ||
+ | Y_{6}^{(6)}=\frac{1}{64} \sqrt{\frac{3003}{\pi }} e^{6 i \phi } \sin ^6(\theta )\\ | ||
+ | \phantom{Y_{6}^{(6)}}=\frac{1}{64} \sqrt{\frac{3003}{\pi }} (x+i y)^6 | ||
+ | $$ | ||
+ | |||
+ | {{: | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ====== Different orbital basis sets used ====== | ||
+ | {{indexmenu> |