Differences
This shows you the differences between two versions of the page.
physics_chemistry:point_groups:d3h:orientation_zy [2018/03/21 17:27] – created Stefano Agrestini | physics_chemistry:point_groups:d3h:orientation_zy [2018/04/06 09:04] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ~~CLOSETOC~~ | ||
+ | |||
====== Orientation Zy ====== | ====== Orientation Zy ====== | ||
+ | |||
+ | ===== Symmetry Operations ===== | ||
### | ### | ||
- | alligned paragraph text | + | |
+ | In the D3h Point Group, with orientation Zy there are the following symmetry operations | ||
### | ### | ||
- | ===== Example ===== | + | ### |
+ | |||
+ | {{: | ||
### | ### | ||
- | description text | + | |
### | ### | ||
- | ==== Input ==== | + | ^ Operator ^ Orientation ^ |
- | <code Quanty | + | ^ $\text{E}$ | $\{0,0,0\}$ , | |
- | -- some example code | + | ^ $C_3$ | $\{0,0,1\}$ , $\{0, |
+ | ^ $C_2$ | $\{0,1,0\}$ , $\left\{\sqrt{3}, | ||
+ | ^ $\sigma _h$ | $\{0,0,1\}$ , | | ||
+ | ^ $S_3$ | $\{0,0,1\}$ , $\{0, | ||
+ | ^ $\sigma _v$ | $\{1,0,0\}$ , $\left\{1, | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Different Settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Character Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ \text{E} \, | ||
+ | ^ $ A'_1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | | ||
+ | ^ $ A'_2 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ | | ||
+ | ^ $ \text{E' | ||
+ | ^ $ A'' | ||
+ | ^ $ A'' | ||
+ | ^ $ \text{E'' | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Product Table ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ A'_1 $ ^ $ A'_2 $ ^ $ \text{E' | ||
+ | ^ $ A'_1 $ | $ A'_1 $ | $ A'_2 $ | $ \text{E' | ||
+ | ^ $ A'_2 $ | $ A'_2 $ | $ A'_1 $ | $ \text{E' | ||
+ | ^ $ \text{E' | ||
+ | ^ $ A'' | ||
+ | ^ $ A'' | ||
+ | ^ $ \text{E'' | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Sub Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | * [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Super Groups with compatible settings ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Invariant Potential expanded on renormalized spherical Harmonics ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | Any potential (function) can be written as a sum over spherical harmonics. | ||
+ | $$V(r, | ||
+ | Here $A_{k, | ||
+ | The presence of symmetry induces relations between the expansion coefficients such that $V(r, | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Expansion ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | i B(3,3) & k=3\land (m=-3\lor m=3) \\ | ||
+ | | ||
+ | i B(5,3) & k=5\land (m=-3\lor m=3) \\ | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Input format suitable for Mathematica (Quanty.nb) | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty | ||
+ | |||
+ | Akm[k_, | ||
</ | </ | ||
- | ==== Result ==== | + | ### |
- | <WRAP center box 100%> | + | |
- | text produced as output | + | |
- | </ | + | |
- | ===== Table of contents | + | ==== Input format suitable for Quanty |
- | {{indexmenu> | + | |
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, A(0,0)} , | ||
+ | {2, 0, A(2,0)} , | ||
+ | | ||
+ | {3, 3, (I)*(B(3, | ||
+ | {4, 0, A(4,0)} , | ||
+ | | ||
+ | {5, 3, (I)*(B(5, | ||
+ | {6, 0, A(6,0)} , | ||
+ | | ||
+ | {6, 6, A(6,6)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of spherical harmonics ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | The operator representing the potential in second quantisation is given as: | ||
+ | $$ O = \sum_{n'', | ||
+ | For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n, | ||
+ | $$ A_{n'' | ||
+ | Note the difference between the function $A_{k,m}$ and the parameter $A_{n'' | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | we can express the operator as | ||
+ | $$ O = \sum_{n'', | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | The table below shows the expectation value of $O$ on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'', | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{0}^{(0)}} $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ {Y_{0}^{(0)}} $|$ \text{Ass}(0, | ||
+ | ^$ {Y_{-1}^{(1)}} $|$\color{darkred}{ 0 }$|$ \text{App}(0, | ||
+ | ^$ {Y_{0}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ \text{App}(0, | ||
+ | ^$ {Y_{1}^{(1)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0, | ||
+ | ^$ {Y_{-2}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{3}{7} i \text{Bpd}(3, | ||
+ | ^$ {Y_{-1}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Add}(0, | ||
+ | ^$ {Y_{0}^{(2)}} $|$ \frac{\text{Asd}(2, | ||
+ | ^$ {Y_{1}^{(2)}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0, | ||
+ | ^$ {Y_{2}^{(2)}} $|$ 0 $|$\color{darkred}{ -\frac{3}{7} i \text{Bpd}(3, | ||
+ | ^$ {Y_{-3}^{(3)}} $|$\color{darkred}{ \frac{i \text{Bsf}(3, | ||
+ | ^$ {Y_{-2}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3, | ||
+ | ^$ {Y_{-1}^{(3)}} $|$\color{darkred}{ 0 }$|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2, | ||
+ | ^$ {Y_{0}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2, | ||
+ | ^$ {Y_{1}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2, | ||
+ | ^$ {Y_{2}^{(3)}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ -\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdf}(3, | ||
+ | ^$ {Y_{3}^{(3)}} $|$\color{darkred}{ \frac{i \text{Bsf}(3, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Rotation matrix to symmetry adapted functions (choice is not unique) ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{0}^{(0)}} $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ \text{s} $|$ 1 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ p_y $|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ 1 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ p_x $|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ d_{3z^2-r^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$| | ||
+ | ^$ f_{y\left(3x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $| | ||
+ | ^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $| | ||
+ | ^$ f_{y\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{z\left(5z^2-3r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{x\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $| | ||
+ | ^$ f_{x\left(x^2-3y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{\sqrt{2}} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ==== One particle coupling on a basis of symmetry adapted functions ==== | ||
+ | |||
+ | ### | ||
+ | |||
+ | After rotation we find | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ \text{s} $ ^ $ p_y $ ^ $ p_z $ ^ $ p_x $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^ | ||
+ | ^$ \text{s} $|$ \text{Ass}(0, | ||
+ | ^$ p_y $|$\color{darkred}{ 0 }$|$ \text{App}(0, | ||
+ | ^$ p_z $|$\color{darkred}{ 0 }$|$ 0 $|$ \text{App}(0, | ||
+ | ^$ p_x $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \text{App}(0, | ||
+ | ^$ d_{\text{xy}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{3}{7} \text{Bpd}(3, | ||
+ | ^$ d_{\text{yz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ \text{Add}(0, | ||
+ | ^$ d_{3z^2-r^2} $|$ \frac{\text{Asd}(2, | ||
+ | ^$ d_{\text{xz}} $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ \text{Add}(0, | ||
+ | ^$ d_{x^2-y^2} $|$ 0 $|$\color{darkred}{ \frac{3}{7} \text{Bpd}(3, | ||
+ | ^$ f_{y\left(3x^2-y^2\right)} $|$\color{darkred}{ \sqrt{\frac{2}{7}} \text{Bsf}(3, | ||
+ | ^$ f_{\text{xyz}} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3, | ||
+ | ^$ f_{y\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2, | ||
+ | ^$ f_{z\left(5z^2-3r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2, | ||
+ | ^$ f_{x\left(5z^2-r^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2, | ||
+ | ^$ f_{z\left(x^2-y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdf}(3, | ||
+ | ^$ f_{x\left(x^2-3y^2\right)} $|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$\color{darkred}{ 0 }$|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Aff}(0, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | ===== Coupling for a single shell ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Although the parameters $A_{l'', | ||
+ | |||
+ | ### | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | 0 & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, Ea1p} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{0}^{(0)}} $ ^ | ||
+ | ^$ {Y_{0}^{(0)}} $|$ \text{Ea1p} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ \text{s} $ ^ | ||
+ | ^$ \text{s} $|$ \text{Ea1p} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{0}^{(0)}} $ ^ | ||
+ | ^$ \text{s} $|$ 1 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^$$\text{Ea1p}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/ | ||
+ | {2, 0, (5/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ | ||
+ | ^$ {Y_{-1}^{(1)}} $|$ \text{Eep} $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{0}^{(1)}} $|$ 0 $|$ \text{Ea2pp} $|$ 0 $| | ||
+ | ^$ {Y_{1}^{(1)}} $|$ 0 $|$ 0 $|$ \text{Eep} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ p_y $ ^ $ p_z $ ^ $ p_x $ ^ | ||
+ | ^$ p_y $|$ \text{Eep} $|$ 0 $|$ 0 $| | ||
+ | ^$ p_z $|$ 0 $|$ \text{Ea2pp} $|$ 0 $| | ||
+ | ^$ p_x $|$ 0 $|$ 0 $|$ \text{Eep} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-1}^{(1)}} $ ^ $ {Y_{0}^{(1)}} $ ^ $ {Y_{1}^{(1)}} $ ^ | ||
+ | ^$ p_y $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $| | ||
+ | ^$ p_z $|$ 0 $|$ 1 $|$ 0 $| | ||
+ | ^$ p_x $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^$$\text{Eep}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Ea2pp}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eep}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | 0 & k\neq 4\lor m\neq 0 \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/5)*(Ea1p + (2)*(Eep + Eepp))} , | ||
+ | {2, 0, Ea1p + (-2)*(Eep) + Eepp} , | ||
+ | {4, 0, (3/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ | ||
+ | ^$ {Y_{-2}^{(2)}} $|$ \text{Eep} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{-1}^{(2)}} $|$ 0 $|$ \text{Eepp} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{0}^{(2)}} $|$ 0 $|$ 0 $|$ \text{Ea1p} $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{1}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eepp} $|$ 0 $| | ||
+ | ^$ {Y_{2}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eep} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^ | ||
+ | ^$ d_{\text{xy}} $|$ \text{Eep} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ d_{\text{yz}} $|$ 0 $|$ \text{Eepp} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ \text{Ea1p} $|$ 0 $|$ 0 $| | ||
+ | ^$ d_{\text{xz}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eepp} $|$ 0 $| | ||
+ | ^$ d_{x^2-y^2} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eep} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ | ||
+ | ^$ d_{\text{xy}} $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $| | ||
+ | ^$ d_{\text{yz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $| | ||
+ | ^$ d_{3z^2-r^2} $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $| | ||
+ | ^$ d_{\text{xz}} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $| | ||
+ | ^$ d_{x^2-y^2} $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^$$\text{Eep}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eepp}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Ea1p}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eepp}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eep}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for f orbitals ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | | ||
+ | | ||
+ | 0 & (k\neq 6\land (k\neq 4\lor m\neq 0))\lor (m\neq -6\land m\neq 0\land m\neq 6) \\ | ||
+ | | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty> | ||
+ | |||
+ | Akm = {{0, 0, (1/7)*(Ea1p + Ea2p + Ea2pp + (2)*(Eep) + (2)*(Eepp))} , | ||
+ | {2, 0, (-5/ | ||
+ | {4, 0, (3/ | ||
+ | {6, 0, (-13/ | ||
+ | | ||
+ | {6, 6, (-13/ | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ {Y_{-3}^{(3)}} $|$ \frac{\text{Ea1p}+\text{Ea2p}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Ea1p}-\text{Ea2p}}{2} $| | ||
+ | ^$ {Y_{-2}^{(3)}} $|$ 0 $|$ \text{Eepp} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{-1}^{(3)}} $|$ 0 $|$ 0 $|$ \text{Eep} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{0}^{(3)}} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ea2pp} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{1}^{(3)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eep} $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{2}^{(3)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eepp} $|$ 0 $| | ||
+ | ^$ {Y_{3}^{(3)}} $|$ \frac{\text{Ea1p}-\text{Ea2p}}{2} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{\text{Ea1p}+\text{Ea2p}}{2} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^ | ||
+ | ^$ f_{y\left(3x^2-y^2\right)} $|$ \text{Ea1p} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{\text{xyz}} $|$ 0 $|$ \text{Eepp} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{y\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ \text{Eep} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{z\left(5z^2-3r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ea2pp} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{x\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eep} $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Eepp} $|$ 0 $| | ||
+ | ^$ f_{x\left(x^2-3y^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \text{Ea2p} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Rotation matrix used** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ f_{y\left(3x^2-y^2\right)} $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $| | ||
+ | ^$ f_{\text{xyz}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{i}{\sqrt{2}} $|$ 0 $| | ||
+ | ^$ f_{y\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ \frac{i}{\sqrt{2}} $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{z\left(5z^2-3r^2\right)} $|$ 0 $|$ 0 $|$ 0 $|$ 1 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{x\left(5z^2-r^2\right)} $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ -\frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $| | ||
+ | ^$ f_{z\left(x^2-y^2\right)} $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{\sqrt{2}} $|$ 0 $| | ||
+ | ^$ f_{x\left(x^2-3y^2\right)} $|$ \frac{1}{\sqrt{2}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ -\frac{1}{\sqrt{2}} $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Irriducible representations and their onsite energy** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^ ^$$\text{Ea1p}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eepp}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eep}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Ea2pp}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eep}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Eepp}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | ^ ^$$\text{Ea2p}$$ | {{: | ||
+ | |$$\psi(\theta, | ||
+ | |$$\psi(\hat{x}, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ===== Coupling between two shells ===== | ||
+ | |||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | Click on one of the subsections to expand it or < | ||
+ | |||
+ | ### | ||
+ | |||
+ | ==== Potential for s-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 2\lor m\neq 0 \\ | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ | ||
+ | ^$ {Y_{0}^{(0)}} $|$ 0 $|$ 0 $|$ \frac{A(2, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^ | ||
+ | ^$ \text{s} $|$ 0 $|$ 0 $|$ \frac{A(2, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for s-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 3\lor (m\neq -3\land m\neq 3) \\ | ||
+ | i B(3,3) & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty> | ||
+ | |||
+ | Akm = {{3,-3, (I)*(B(3, | ||
+ | {3, 3, (I)*(B(3, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ {Y_{0}^{(0)}} $|$ -\frac{i B(3, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^ | ||
+ | ^$ \text{s} $|$ \sqrt{\frac{2}{7}} B(3,3) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-d orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & k\neq 3\lor (m\neq -3\land m\neq 3) \\ | ||
+ | i B(3,3) & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty> | ||
+ | |||
+ | Akm = {{3,-3, (I)*(B(3, | ||
+ | {3, 3, (I)*(B(3, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-2}^{(2)}} $ ^ $ {Y_{-1}^{(2)}} $ ^ $ {Y_{0}^{(2)}} $ ^ $ {Y_{1}^{(2)}} $ ^ $ {Y_{2}^{(2)}} $ ^ | ||
+ | ^$ {Y_{-1}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{3}{7} i B(3,3) $| | ||
+ | ^$ {Y_{0}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{1}^{(1)}} $|$ \frac{3}{7} i B(3,3) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ d_{\text{xy}} $ ^ $ d_{\text{yz}} $ ^ $ d_{3z^2-r^2} $ ^ $ d_{\text{xz}} $ ^ $ d_{x^2-y^2} $ ^ | ||
+ | ^$ p_y $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{3}{7} B(3,3) $| | ||
+ | ^$ p_z $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ p_x $|$ \frac{3}{7} B(3,3) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for p-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 2\land k\neq 4)\lor m\neq 0 \\ | ||
+ | | ||
+ | | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty> | ||
+ | |||
+ | Akm = {{2, 0, A(2,0)} , | ||
+ | {4, 0, A(4,0)} } | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ {Y_{-1}^{(1)}} $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{0}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ {Y_{1}^{(1)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^ | ||
+ | ^$ p_y $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ p_z $|$ 0 $|$ 0 $|$ 0 $|$ \frac{27 A(2,0)+20 A(4,0)}{15 \sqrt{21}} $|$ 0 $|$ 0 $|$ 0 $| | ||
+ | ^$ p_x $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{15} \sqrt{\frac{2}{7}} (9 A(2,0)-5 A(4,0)) $|$ 0 $|$ 0 $| | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | ==== Potential for d-f orbital mixing ==== | ||
+ | |||
+ | <hidden **Potential parameterized with onsite energies of irriducible representations** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | ||
+ | 0 & (k\neq 3\land k\neq 5)\lor (m\neq -3\land m\neq 3) \\ | ||
+ | i B(3,3) & k=3\land (m=-3\lor m=3) \\ | ||
+ | i B(5,3) & \text{True} | ||
+ | \end{cases}$$ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **Input format suitable for Mathematica (Quanty.nb)** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty.nb> | ||
+ | |||
+ | Akm[k_, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | <code Quanty Akm_D3h_Zy.Quanty> | ||
+ | |||
+ | Akm = {{3,-3, (I)*(B(3, | ||
+ | {3, 3, (I)*(B(3, | ||
+ | | ||
+ | {5, 3, (I)*(B(5, | ||
+ | |||
+ | </ | ||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of spherical Harmonics** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ {Y_{-3}^{(3)}} $ ^ $ {Y_{-2}^{(3)}} $ ^ $ {Y_{-1}^{(3)}} $ ^ $ {Y_{0}^{(3)}} $ ^ $ {Y_{1}^{(3)}} $ ^ $ {Y_{2}^{(3)}} $ ^ $ {Y_{3}^{(3)}} $ ^ | ||
+ | ^$ {Y_{-2}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{231} i \sqrt{2} \left(11 \sqrt{7} B(3,3)-35 B(5, | ||
+ | ^$ {Y_{-1}^{(2)}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{231} i \sqrt{5} \left(11 \sqrt{7} B(3,3)+28 B(5, | ||
+ | ^$ {Y_{0}^{(2)}} $|$ \frac{1}{231} i \sqrt{5} \left(11 \sqrt{7} B(3,3)-14 B(5, | ||
+ | ^$ {Y_{1}^{(2)}} $|$ 0 $|$ \frac{1}{231} i \sqrt{5} \left(11 \sqrt{7} B(3,3)+28 B(5, | ||
+ | ^$ {Y_{2}^{(2)}} $|$ 0 $|$ 0 $|$ \frac{1}{231} i \sqrt{2} \left(11 \sqrt{7} B(3,3)-35 B(5, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | <hidden **The Hamiltonian on a basis of symmetric functions** > | ||
+ | |||
+ | ### | ||
+ | |||
+ | | $ $ ^ $ f_{y\left(3x^2-y^2\right)} $ ^ $ f_{\text{xyz}} $ ^ $ f_{y\left(5z^2-r^2\right)} $ ^ $ f_{z\left(5z^2-3r^2\right)} $ ^ $ f_{x\left(5z^2-r^2\right)} $ ^ $ f_{z\left(x^2-y^2\right)} $ ^ $ f_{x\left(x^2-3y^2\right)} $ ^ | ||
+ | ^$ d_{\text{xy}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{5}{33} \sqrt{2} B(5, | ||
+ | ^$ d_{\text{yz}} $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ 0 $|$ \frac{1}{3} \sqrt{\frac{5}{7}} B(3, | ||
+ | ^$ d_{3z^2-r^2} $|$ \frac{2}{33} \sqrt{10} B(5, | ||
+ | ^$ d_{\text{xz}} $|$ 0 $|$ \frac{1}{3} \sqrt{\frac{5}{7}} B(3, | ||
+ | ^$ d_{x^2-y^2} $|$ 0 $|$ 0 $|$ \frac{5}{33} \sqrt{2} B(5, | ||
+ | |||
+ | |||
+ | ### | ||
+ | |||
+ | </ | ||
+ | |||
+ | ===== Table of several point groups ===== | ||
+ | |||
+ | ### | ||
+ | |||
+ | [[physics_chemistry: | ||
+ | |||
+ | ### | ||
+ | |||
+ | ### | ||
+ | |||
+ | ^Nonaxial groups | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^C< | ||
+ | ^C< | ||
+ | ^D< | ||
+ | ^D< | ||
+ | ^S< | ||
+ | ^Cubic groups | [[physics_chemistry: | ||
+ | ^Linear groups | ||
+ | |||
+ | ### |