{{indexmenu_n>999}}
====== New ======
###
ResponseFunction.New(Table) creates a new response function object according to the values in Table. Response functions can be of 4 different types (ListOfPoles, Tri, And, or Nat) and single-valued or matrix-valued. Below 8 examples for creating each of these response functions by hand at some arbitrary values.
###
###
The input table contains the elements
* "type" a string equal to "ListOfPoles", "Tri", "And", or "Nat" defining the type used for the internal storage of a response functoin
* "name" an arbitrary string used to recognise the response function
* "mu" a double giving the chemical potential. We highly recommend to shift the energy scale such that $\mu=0$. Documentation for the behaviour of several functions at finite chemical potential, $\mu$ is still missing. You can always shift the chemical potential to zero by shifting the onsite energy of all orbitals by $-\mu$.
* Depending on the type lists of doubles, matrices, or complex matrices $A$ and $B$. Each section below starts by defining $G(\omega,\Gamma)$ in terms of $A$'s and $B$'s, the input below uses these variables. We use capital font for matrices and small font for numbers. Note that the matrices $A$ and $B$ must fulfil several conditions for the response function to be physical. Only physical response functions can be transformed between all types as unitary transformations.
###
===== ListOfPoles representation =====
###
Response functions stored as list of poles are defined via
$$ G(\omega,\Gamma) = A_0 + \sum_{i=1}^{n} \frac{B_{i-1}}{\omega + \mathrm{i}\Gamma/2 - a_i} $$
###
==== Single valued functions ====
a = {10, -1,-0.5, 0, 0.5, 1, 1.5}
b = { 0.1, 0.1, 0.1, 0.1, 0.2, 0.3}
G = ResponseFunction.New( {a,b,mu=0,type="ListOfPoles", name="A"} )
print("The resposne function definition is")
print(G)
omega = 1.1
Gamma = 0.001
print()
print("Evaluated at omega =",omega," and Gamma =",Gamma," yields ",G(omega,Gamma))
Generates the output
The resposne function definition is
{ { 10 , -1 , -0.5 , 0 , 0.5 , 1 , 1.5 } ,
{ 0.1 , 0.1 , 0.1 , 0.1 , 0.2 , 0.3 } ,
name = A ,
type = ListOfPoles ,
mu = 0 }
Evaluated at omega = 1.1 and Gamma = 0.001 yields (11.617645834991 - 0.011148328755289 I)
==== Matrix valued functions ====
A0 = Matrix.New( {{0,0,0},{0,0,0},{0,0,0}} )
a1 = -1
a2 = 1/2
a3 = 1
B1s = Matrix.New( {{1,1,3},{1,5,6},{3,6,9}} )
B1 = B1s * B1s
B2s = Matrix.New( {{2,0,3},{0,5,6},{3,6,9}} )
B2 = B2s * B2s
B3s = Matrix.New( {{3,0,3},{0,5,6},{3,6,9}} )
B3 = B3s * B3s
G = ResponseFunction.New( { {A0,a1,a2,a3}, {B1,B2,B3}, mu=0, type="ListOfPoles", name="ML"} )
print("The resposne function definition is")
print(G)
omega = 1.1
Gamma = 0.001
print()
print("Evaluated at omega =",omega," and Gamma =",Gamma," yields ")
print(G(omega,Gamma))
Generates the output
{ { { { 0 , 0 , 0 } ,
{ 0 , 0 , 0 } ,
{ 0 , 0 , 0 } } , -1 , 0.5 , 1 } ,
{ { { 11 , 24 , 36 } ,
{ 24 , 62 , 87 } ,
{ 36 , 87 , 126 } } ,
{ { 13 , 18 , 33 } ,
{ 18 , 61 , 84 } ,
{ 33 , 84 , 126 } } ,
{ { 18 , 18 , 36 } ,
{ 18 , 61 , 84 } ,
{ 36 , 84 , 126 } } } ,
type = ListOfPoles ,
name = ML ,
mu = 0 }
Evaluated at omega = 1.1 and Gamma = 0.001 yields
{ { (206.90024667403 - 0.91928020904165 I) , (221.42405005987 - 0.9276985714825 I) , (432.13381820162 - 1.8498699350513 I) } ,
{ (221.42405005987 - 0.9276985714825 I) , (741.17515429623 - 3.1416753933531 I) , (1021.4074723828 - 4.3264255332922 I) } ,
{ (432.13381820162 - 1.8498699350513 I) , (1021.4074723828 - 4.3264255332922 I) , (1529.9683515529 - 6.4891280958856 I) } }
===== Tridiagonal representation =====
###
Response functions stored in tridiagonal format are defined via
$$ G(\omega,\Gamma) = A_0 + B_0^* \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_1 - B_{1}^{\phantom{\dagger}} \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_2 - B_{2}^{\phantom{\dagger}} \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_2 - B_{3}^{\phantom{\dagger}} \frac{...}{\omega + \mathrm{i}\Gamma/2 - A_{n-1} - B_{n-1}^{\phantom{\dagger}} \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_n } B_{n-1}^{\dagger}} B_{3}^{\dagger} } B_{2}^{\dagger} } B_{1}^{\dagger} } B_0^T $$
###
==== Single valued functions ====
a = {0, 1, 1, 1, 1, 1, 1}
b = { 1, 0.5, 0.5, 0.5, 0.5, 0.5}
G = ResponseFunction.New( {a,b,mu=0,type="Tri", name="GT"} )
print("The resposne function definition is")
print(G)
omega = 1.1
Gamma = 0.001
print()
print("Evaluated at omega =",omega," and Gamma =",Gamma," yields ")
print(G(omega,Gamma))
Generates the output
{ { 0 , 1 , 1 , 1 , 1 , 1 , 1 } ,
{ 1 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 } ,
name = GT ,
type = Tri ,
mu = 0 }
Evaluated at omega = 1.1 and Gamma = 0.001 yields
(-1.4800882525182 - 0.010904814637879 I)
==== Matrix valued functions ====
A0 = Matrix.New( {{0,0,0},{0,0,0},{0,0,0}} )
A1 = Matrix.New( {{1,2,3},{2,5,6},{3,6,9}} )
A2 = Matrix.New( {{2,2,3},{2,5,6},{3,6,9}} )
A3 = Matrix.New( {{3,2,3},{2,5,6},{3,6,9}} )
B0s = Matrix.New( {{1,0,0},{0,1,0},{0,0,1}} )
B0 = B0s * B0s
B1s = Matrix.New( {{1,1,3},{1,5,6},{3,6,9}} )
B1 = B1s * B1s
B2s = Matrix.New( {{2,0,3},{0,5,6},{3,6,9}} )
B2 = B2s * B2s
B3s = Matrix.New( {{3,0,3},{0,5,6},{3,6,9}} )
B3 = B3s * B3s
G = ResponseFunction.New( { {A0,A1,A2,A3}, {B0,B1,B2}, mu=0, type="Tri", name="MT"} )
print("The resposne function definition is")
print(G)
omega = 1.1
Gamma = 0.001
print()
print("Evaluated at omega =",omega," and Gamma =",Gamma," yields ")
print(G(omega,Gamma))
Generates the output
{ { { { 0 , 0 , 0 } ,
{ 0 , 0 , 0 } ,
{ 0 , 0 , 0 } } ,
{ { 1 , 2 , 3 } ,
{ 2 , 5 , 6 } ,
{ 3 , 6 , 9 } } ,
{ { 2 , 2 , 3 } ,
{ 2 , 5 , 6 } ,
{ 3 , 6 , 9 } } ,
{ { 3 , 2 , 3 } ,
{ 2 , 5 , 6 } ,
{ 3 , 6 , 9 } } } ,
{ { { 1 , 0 , 0 } ,
{ 0 , 1 , 0 } ,
{ 0 , 0 , 1 } } ,
{ { 11 , 24 , 36 } ,
{ 24 , 62 , 87 } ,
{ 36 , 87 , 126 } } ,
{ { 13 , 18 , 33 } ,
{ 18 , 61 , 84 } ,
{ 33 , 84 , 126 } } } ,
type = Tri ,
mu = 0 ,
BlockSize = { 3 , 3 , 3 , 3 } ,
name = MT }
Evaluated at omega = 1.1 and Gamma = 0.001 yields
{ { (0.82041346528466 - 0.0005287731551253 I) , (-0.10773626514221 + 0.00047135055668369 I) , (-0.18782055050369 - 0.00021908813997981 I) } ,
{ (-0.10773626514222 + 0.00047135055668371 I) , (0.9906660606812 - 0.0018715007457328 I) , (-0.67958409204703 + 0.0013049040629232 I) } ,
{ (-0.18782055050369 - 0.00021908813997982 I) , (-0.67958409204703 + 0.0013049040629232 I) , (0.51775011277794 - 0.00095267059250443 I) } }
===== Anderson representation =====
###
Response functions stored in Anderson format are defined via
$$ G(\omega,\Gamma) = A_0 + B_0^* \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_1 - \sum_{i=2}^{n} B_{i-1}^{\phantom{\dagger}} \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_{i} } B_{i-1}^{\dagger} } B_0^T $$
###
==== Single valued functions ====
a = {0, 1, 1.5, 2, 2.5, 3, 3.5}
b = { 1, 0.5, 0.5, 0.5, 0.5, 0.5}
G = ResponseFunction.New( {a,b,mu=0,type="And", name="GA"} )
print("The resposne function definition is")
print(G)
omega = 1.1
Gamma = 0.001
print()
print("Evaluated at omega =",omega," and Gamma =",Gamma," yields ")
print(G(omega,Gamma))
Generates the output
The resposne function definition is
{ { 0 , 1 , 1.5 , 2 , 2.5 , 3 , 3.5 } ,
{ 1 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 } ,
type = And ,
name = GA ,
mu = 0 }
Evaluated at omega = 1.1 and Gamma = 0.001 yields
(0.70566877797716 - 0.00077467678957667 I)
==== Matrix valued functions ====
A0 = Matrix.New( {{0,0,0},{0,0,0},{0,0,0}} )
A1 = Matrix.New( {{1,2,3},{2,5,6},{3,6,9}} )
A2 = Matrix.New( {{2,2,3},{2,5,6},{3,6,9}} )
A3 = Matrix.New( {{3,2,3},{2,5,6},{3,6,9}} )
B0s = Matrix.New( {{1,0,0},{0,1,0},{0,0,1}} )
B0 = B0s * B0s
B1s = Matrix.New( {{1,1,3},{1,5,6},{3,6,9}} )
B1 = B1s * B1s
B2s = Matrix.New( {{2,0,3},{0,5,6},{3,6,9}} )
B2 = B2s * B2s
B3s = Matrix.New( {{3,0,3},{0,5,6},{3,6,9}} )
B3 = B3s * B3s
G = ResponseFunction.New( { {A0,A1,A2,A3}, {B0,B1,B2}, mu=0, type="And", name="MA"} )
print("The resposne function definition is")
print(G)
omega = 1.1
Gamma = 0.001
print()
print("Evaluated at omega =",omega," and Gamma =",Gamma," yields ")
print(G(omega,Gamma))
Generates the output
{ { { { 0 , 0 , 0 } ,
{ 0 , 0 , 0 } ,
{ 0 , 0 , 0 } } ,
{ { 1 , 2 , 3 } ,
{ 2 , 5 , 6 } ,
{ 3 , 6 , 9 } } ,
{ { 2 , 2 , 3 } ,
{ 2 , 5 , 6 } ,
{ 3 , 6 , 9 } } ,
{ { 3 , 2 , 3 } ,
{ 2 , 5 , 6 } ,
{ 3 , 6 , 9 } } } ,
{ { { 1 , 0 , 0 } ,
{ 0 , 1 , 0 } ,
{ 0 , 0 , 1 } } ,
{ { 11 , 24 , 36 } ,
{ 24 , 62 , 87 } ,
{ 36 , 87 , 126 } } ,
{ { 13 , 18 , 33 } ,
{ 18 , 61 , 84 } ,
{ 33 , 84 , 126 } } } ,
mu = 0 ,
name = MA ,
type = And }
Evaluated at omega = 1.1 and Gamma = 0.001 yields
{ { (0.079202023515427 - 0.00018271816123949 I) , (0.019672301598063 - 0.00021050428128743 I) , (-0.033329362936266 + 0.00019529208541705 I) } ,
{ (0.019672301598062 - 0.00021050428128743 I) , (-0.028178571653589 - 0.00029307470840254 I) , (0.014801870346139 + 0.00026254621032145 I) } ,
{ (-0.033329362936266 + 0.00019529208541705 I) , (0.014801870346139 + 0.00026254621032145 I) , (-0.0017775335507766 - 0.00023672956892774 I) } }
===== Natural impurity orbital representation =====
###
Response functions stored in Natural impurity format are defined via
$$ G(\omega,\Gamma) = A_0 + B_0^* \left( G_{val}(\omega,\Gamma) + G_{con}(\omega,\Gamma) \right) B_0^T$$, with $G_{val}(\omega,\Gamma)$ and $G_{con}(\omega,\Gamma)$ as response functions with poles either at positive energy ($G_{con}(\omega,\Gamma)$) or poles at negative energy ($G_{val}(\omega,\Gamma)$).
###
==== Single valued functions ====
acon = {0, 1, 1, 1, 1, 1, 1}
bcon = { sqrt(1/2), 0.5, 0.5, 0.5, 0.5, 0.5}
Gcon = ResponseFunction.New( {acon,bcon,mu=0,type="Tri"} )
aval = {0, -1, -1, -2, -1, -1, -1}
bval = { sqrt(1/2), 0.5, 0.5, 0.5, 0.5, 0.5}
Gval = ResponseFunction.New( {aval,bval,mu=0,type="Tri"} )
a0=0
b0=1
G = ResponseFunction.New( {{a0,b0},val=Gval,con=Gcon,mu=0,type="Nat", name="GD"} )
print("The resposne function definition is")
print(G)
omega = 1.1
Gamma = 0.001
print()
print("Evaluated at omega =",omega," and Gamma =",Gamma," yields ")
print(G(omega,Gamma))
Generates the output
The resposne function definition is
{ { 0 , 1 } ,
type = NaturalImpurityOrbital ,
name = GD ,
mu = 0 ,
con = { { 0 , 1 , 1 , 1 , 1 , 1 , 1 } ,
{ 0.70710678118655 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 } ,
mu = 0 ,
type = Tri ,
name = Matrix } ,
epsilon = 0 ,
val = { { 0 , -1 , -1 , -2 , -1 , -1 , -1 } ,
{ 0.70710678118655 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 } ,
mu = 0 ,
type = Tri ,
name = Matrix } }
Evaluated at omega = 1.1 and Gamma = 0.001 yields
(-0.48700605787262 - 0.0055204934115643 I)
==== Matrix valued functions ====
-- some example code
Generates the output
text produced as output
===== Table of contents =====
{{indexmenu>../#2|tsort}}