Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
documentation:language_reference:functions:newtightbinding [2024/08/29 17:55] – Micheangelo Tagliavini | documentation:language_reference:functions:newtightbinding [2025/01/21 08:28] (current) – Maurits W. Haverkort | ||
---|---|---|---|
Line 2: | Line 2: | ||
- | / | + | // |
* Name: "" | * Name: "" | ||
- | * Cell: {a,b,c} with a, b, c as random | + | * Cell: {a,b,c} with a, b, c as zero vectors. |
* Atoms: {} | * Atoms: {} | ||
* Units: {" | * Units: {" | ||
- | * NF: `0` (number of orbitals defined in Atoms) | + | * Hopping: {} |
- | ### Units Property | + | * The Name is a string one can choose for printing |
- | The `Units` property has the following options: | + | |
- | - `Units[1]`: Sets the scaling | + | * Atoms is a list defining |
- | - `Units[2]`: Defines | + | * The Hopping contains a table defining |
- | - `Units[3]`: Selects `" | + | |
- | Once a Tight Binding | + | // |
+ | For more details see the [[documentation: | ||
+ | Besides defining TightBinding objects by hand they can be generated from the output of DFT calculation (see, for example, // | ||
- | ===== Input ===== | ||
- | |||
- | * bla : Integer | ||
- | * bla2 : Real | ||
- | |||
- | ===== Output ===== | ||
- | |||
- | * bla : real | ||
===== Example ===== | ===== Example ===== | ||
- | ### | + | |
- | description text | + | The following example creates a minimal tight binding object for a Dichalcogenide lattice. The parameters are not set to represent a real material. |
- | ### | + | |
==== Input ==== | ==== Input ==== | ||
+ | |||
<code Quanty Example.Quanty> | <code Quanty Example.Quanty> | ||
- | -- | + | -- set parameters |
- | ### Input | + | dAB = 0.2 |
- | ```lua | + | tnn = 1.1 |
- | -- Create | + | -- create |
HTB = NewTightBinding() | HTB = NewTightBinding() | ||
+ | HTB.Name = " | ||
+ | HTB.Cell = {{sqrt(3), | ||
+ | {sqrt(3/ | ||
+ | {0,0,1}} | ||
+ | HTB.Atoms = { {" | ||
+ | {" | ||
+ | HTB.Hopping = {{" | ||
+ | {" | ||
+ | {" | ||
+ | {" | ||
+ | {" | ||
+ | {" | ||
+ | {" | ||
+ | {" | ||
+ | } | ||
- | print(" | + | print(" |
print(HTB) | print(HTB) | ||
- | + | ||
- | print(" | + | print(" |
- | print(" | + | HCl = CreateClusterHamiltonian(HTB, {"periodic", {{1, |
- | print(" | + | print(HCl) |
- | print(" | + | |
- | print(" | + | |
- | print(" | + | |
- | + | ||
- | t1 = 1 | + | |
- | t2 = 2 | + | |
- | + | ||
- | HTB.Name = "My wishes for dinner" | + | |
- | + | ||
- | HTB.Units = {"2Pi", | + | |
- | + | ||
- | HTB.Cell = { | + | |
- | | + | |
- | | + | |
- | | + | |
- | } | + | |
- | + | ||
- | HTB.Atoms = { | + | |
- | {" | + | |
- | {" | + | |
- | } | + | |
- | + | ||
- | HTB.Hopping = { | + | |
- | {" | + | |
- | {" | + | |
- | {" | + | |
- | {" | + | |
- | } | + | |
</ | </ | ||
+ | ### | ||
+ | |||
+ | ==== Output ==== | ||
- | ==== Result ==== | ||
<file Quanty_Output> | <file Quanty_Output> | ||
- | Printing the TB Object | + | Tight-binding object: |
- | Settings of a tight binding model: | + | Settings of a tight binding model: |
printout of Crystal Structure | printout of Crystal Structure | ||
Units: 2Pi (g.r=2Pi) Angstrom Absolute atom positions | Units: 2Pi (g.r=2Pi) Angstrom Absolute atom positions | ||
Unit cell parameters: | Unit cell parameters: | ||
- | a: 0.0000000 | + | a: 1.7320508 |
- | b: 0.0000000 | + | b: 0.8660254 |
- | c: | + | c: |
Reciprocal latice: | Reciprocal latice: | ||
- | a: 0.0000000 30524692131128596033898117733842076213019192344605263171345790071216510328003874622266126017805876259535366806940969625873947115114721700264263639077479994600233826779136.0000000 | + | a: 3.6275987 |
- | b: | + | b: |
- | c: | + | c: |
- | Number of atoms 0 | + | Number of atoms 2 |
- | Containing a total number of 0 orbitals | + | # 0 | A ( 0 ) at position { |
- | Hopping definitions ( 0 ) | + | | p shell with 1 orbitals { 0 } |
+ | # 1 | B ( 5 ) at position { | ||
+ | | p shell with 1 orbitals { 0 } | ||
+ | Containing a total number of 2 orbitals | ||
+ | Hopping definitions ( 8 ) | ||
+ | Hopping from 0 : A - p to 0 : A - p with translation vector in unit cells: { 0 , 0 , 0 } ({ 0.00000000E+00 | ||
+ | Matrix = | ||
+ | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
+ | [ 0] | ||
+ | [ 0] -1.00000000E-01 | ||
+ | Hopping from 1 : B - p to 1 : B - p with translation vector in unit cells: { 0 , 0 , 0 } ({ 0.00000000E+00 | ||
+ | Matrix = | ||
+ | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
+ | [ 0] | ||
+ | [ | ||
- | Callable Properties: | + | Hopping from 0 : A - p to 1 : B - p with translation vector in unit cells: |
- | Cell: { { 6.0134700169991e-154 , 1.0216608544487e-259 , 2.7856078039899e-91 } , | + | Matrix = |
- | | + | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) |
- | | + | |
- | Units: { 2Pi , Angstrom , Absolute } | + | [ |
- | Atoms: | + | |
- | Hopping: | + | |
- | NF: 0 | + | |
- | Settings of a tight binding model: My wishes for dinner | + | Hopping from 1 : B - p to 0 : A - p with translation vector in unit cells: { 1 , 0 , 0 } ({ 0.00000000E+00 -1.00000000E+00 |
+ | Matrix = | ||
+ | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
+ | [ 0] | ||
+ | [ | ||
- | printout of Crystal Structure | + | Hopping from 0 : A - p to 1 : B - p with translation vector in unit cells: { 0 , -1 , 0 } ({ 8.66025404E-01 -5.00000000E-01 |
- | Units: 2Pi (g.r=2Pi) Bohr | + | |
- | Unit cell parameters: | + | |
- | a: | + | |
- | b: | + | |
- | c: | + | |
- | Reciprocal latice: | + | |
- | a: | + | |
- | b: | + | |
- | c: | + | |
- | Number of atoms 2 | + | |
- | # 0 | pizza ( 0 ) at position { | + | |
- | | Margherita shell with 1 orbitals { 0 } | + | |
- | # 1 | pasta ( 0 ) at position { | + | |
- | | Pesto shell with 1 orbitals { 0 } | + | |
- | | Carbonara shell with 1 orbitals { 0 } | + | |
- | Containing a total number of 3 orbitals | + | |
- | Hopping definitions ( 4 ) | + | |
- | Hopping from 0 : pizza - Margherita | + | |
Matrix = | Matrix = | ||
Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
[ 0] | [ 0] | ||
- | [ | + | [ |
- | Hopping from 1 : pasta - Pesto to 0 : pizza - Margherita | + | Hopping from 1 : B - p to 0 : A - p with translation vector in unit cells: { 0 , 1 , 0 } ({-8.66025404E-01 5.00000000E-01 |
Matrix = | Matrix = | ||
Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
[ 0] | [ 0] | ||
- | [ | + | [ |
- | Hopping from 0 : pizza - Margherita | + | Hopping from 0 : A - p to 1 : B - p with translation vector in unit cells: { -1 , -1 , 0 } ({-8.66025404E-01 -5.00000000E-01 |
Matrix = | Matrix = | ||
Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
[ 0] | [ 0] | ||
- | [ | + | [ |
- | Hopping from 1 : pasta - Carbonara | + | Hopping from 1 : B - p to 0 : A - p with translation vector in unit cells: { 1 , 1 , 0 } ({ 8.66025404E-01 5.00000000E-01 |
Matrix = | Matrix = | ||
Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | Real Part of Matrix with dimensions [Ni=1][Nj=1] ([Rows][Collums]) | ||
[ 0] | [ 0] | ||
- | [ | + | [ |
+ | |||
+ | |||
+ | |||
+ | create a periodic cluster Hamiltonian with 4 unit-cells along the z-axis: | ||
+ | |||
+ | Operator: Operator | ||
+ | QComplex | ||
+ | MaxLength | ||
+ | NFermionic modes = 8 (Number of fermionic modes (site, spin, orbital, ...) in the one particle basis) | ||
+ | NBosonic modes | ||
+ | |||
+ | Operator of Length | ||
+ | QComplex | ||
+ | N | ||
+ | C 0 A 0 | -1.00000000000000E-01 | ||
+ | C 1 A 1 | 1.00000000000000E-01 | ||
+ | C 0 A 1 | 3.30000000000000E+00 | ||
+ | C 1 A 0 | 3.30000000000000E+00 | ||
+ | C 2 A 2 | -1.00000000000000E-01 | ||
+ | C 3 A 3 | 1.00000000000000E-01 | ||
+ | C 2 A 3 | 3.30000000000000E+00 | ||
+ | C 3 A 2 | 3.30000000000000E+00 | ||
+ | C 4 A 4 | -1.00000000000000E-01 | ||
+ | C 5 A 5 | 1.00000000000000E-01 | ||
+ | C 4 A 5 | 3.30000000000000E+00 | ||
+ | C 5 A 4 | 3.30000000000000E+00 | ||
+ | C 6 A 6 | -1.00000000000000E-01 | ||
+ | C 7 A 7 | 1.00000000000000E-01 | ||
+ | C 6 A 7 | 3.30000000000000E+00 | ||
+ | C 7 A 6 | 3.30000000000000E+00 | ||
</ | </ | ||