This is an old revision of the document!
Braket
Braket(psi1, O, psi2) calculates the expectation value or matrix element $\left\langle \psi_1 \mid O \mid \psi_2 \right\rangle$. In Quanty Braket(psi1, O, psi2) is the same as psi1 * O * psi2. The difference is that the function Braket can be faster. Braket can work on lists of functions and then returns a matrix or vector with all possible expectation values
Input
-
psi1 or psiList1 : Wavefunction or list of Wavefunctions
-
O : Operator
-
psi2 or psiList2 : Wavefunction or list of Wavefunctions
Output
-
real or complex number, or a list of these or a matrix of these
Example
The example calculates the expectation values of a few states
Input
- Example.Quanty
NF=2 NB=0 IndexDn={0} IndexUp={1} psi0=NewWavefunction(NF,NB,{{"10",1}}) psi1=NewWavefunction(NF,NB,{{"01",1}}) OppSx = NewOperator("Sx" ,NF,IndexUp,IndexDn) OppSy = NewOperator("Sy" ,NF,IndexUp,IndexDn) OppSz = NewOperator("Sz" ,NF,IndexUp,IndexDn) print("The expectation value of a single state") print(Braket(psi0,OppSz,psi0)) print("The expectation value of a single state with two other states") print(Braket(psi0,OppSx,{psi0,psi1})) -- note that I made one list of length 3, the other of length 2 so that the order is clear print("The expectation value of a three states with two other states") print(Braket({psi0,psi1},OppSy,{psi0,psi1,psi1}))
Result
The expectation value of a single state -0.5 The expectation value of a single state with two other states { 0 , 0.5 } The expectation value of a three states with two other states { { 0 , (0 + 0.5 I) , (0 + 0.5 I) } , { (0 - 0.5 I) , 0 , 0 } }