Table of Contents
This is an old revision of the document!
Sqrt
Matrix.Sqrt($M$) takes a quadratic matrix $M$ and returns $\sqrt{M}$, which is defined by the property $\sqrt{M}\sqrt{M} = M$.
At the moment this only works for Hermitian and positive definite matrices.
Example
Input
- Example.Quanty
M = {{1,2*I}, {-2*I,4}} print("M:") print(M) sqrtM = Matrix.Sqrt(M) print("sqrt(M):") print(sqrtM) print("sqrt(M)*sqrt(M)") print(sqrtM*sqrtM)
Result
M: { { 1 , (0 + 2 I) } , { (-0 - 2 I) , 4 } } sqrt(M): { { 0.44721359549996 , (0 + 0.89442719099992 I) } , { (0 - 0.89442719099992 I) , 1.7888543819998 } } sqrt(M)*sqrt(M) { { 1 , (0 + 2 I) } , { (0 - 2 I) , 4 } }