Table of Contents
This is an old revision of the document!
New
ResponseFunction.New(Table) creates a new response function object according to the values in Table. Response functions can be of 4 different types (ListOfPoles, Tri, And, or Nat) and single-valued or matrix-valued. Below 8 examples for creating each of these response functions by hand at some arbitrary values.
ListOfPoles representation
Response functions stored as list of poles are defined via $$ G(\omega,\Gamma) = A_0 + \sum_{i=1}^{n} B_{i-1} \frac{1}{\omega + \mathrm{i}\Gamma/2 - a_i} $$
Single valued functions
- Example.Quanty
a = {10, -1,-0.5, 0, 0.5, 1, 1.5} b = { 0.1, 0.1, 0.1, 0.1, 0.2, 0.3} G = ResponseFunction.New( {a,b,mu=0,type="ListOfPoles", name="A"} ) print("The resposne function definition is") print(G) omega = 1.1 Gamma = 0.001 print() print("Evaluated at omega =",omega," and Gamma =",Gamma," yields ",G(omega,Gamma))
Generates the output
The resposne function definition is { { 10 , -1 , -0.5 , 0 , 0.5 , 1 , 1.5 } , { 0.1 , 0.1 , 0.1 , 0.1 , 0.2 , 0.3 } , name = A , type = ListOfPoles , mu = 0 } Evaluated at omega = 1.1 and Gamma = 0.001 yields (11.617645834991 - 0.011148328755289 I)
Matrix valued functions
Tridiagonal representation
Response functions stored in tridiagonal format are defined via $$ G(\omega,\Gamma) = A_0 + B_0^* \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_1 - B_{1}^{\phantom{\dagger}} \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_2 - B_{2}^{\phantom{\dagger}} \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_2 - B_{3}^{\phantom{\dagger}} \frac{...}{\omega + \mathrm{i}\Gamma/2 - A_{n-1} - B_{n-1}^{\phantom{\dagger}} \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_n } B_{n-1}^{\dagger}} B_{3}^{\dagger} } B_{2}^{\dagger} } B_{1}^{\dagger} } B_0^T $$
Single valued functions
Matrix valued functions
Anderson representation
Response functions stored in Anderson format are defined via $$ G(\omega,\Gamma) = A_0 + B_0^* \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_1 - \sum_{i=2}^{n} B_{i-1}^{\phantom{\dagger}} \frac{1}{\omega + \mathrm{i}\Gamma/2 - A_{i} } B_{i-1}^{\dagger} } B_0^T $$
Single valued functions
Matrix valued functions
Natural impurity orbital representation
Response functions stored in Natural impurity format are defined via $$ G(\omega,\Gamma) = A_0 + B_0^* \left( G_{val}(\omega,\Gamma) + G_{con}(\omega,\Gamma) \right) B_0^T$$, with $G_{val}(\omega,\Gamma)$ and $G_{con}(\omega,\Gamma)$ as response functions with poles either at positive energy ($G_{con}(\omega,\Gamma)$) or poles at negative energy ($G_{val}(\omega,\Gamma)$).