Table of Contents
This is an old revision of the document!
CalculateSelfEnergy
ResponseFunction.CalculateSelfEnergy($G_0$,$G$) calculates \begin{equation} \Sigma = G_0^{-1} - G^{-1} \end{equation}
Input
-
$G_0$ : ResponseFunction object
-
$G$ : ResponseFunction object
-
Possible options are:
-
“epsilon” : minimal distance between two poles to be considered different in energy (default value 2.3E-13)
Output
-
$\Sigma$ : ResponseFunction object
Example
### ###
Input
- CalculateSelfEnergy.Quanty
-- H0, H1, Npsi, TPes, TIPes are defined beforehand psiList = Eigensystem(H0,StartRestrictions, Npsi) G0PESIPES_Spectra, G0PESIPES_ResponseFunction = CreateSpectra(H0, {TPes, TIPes}, psiList[1], {{"Emin",-1}, {"Emax",9}, {"NE",1000}, {"Gamma",0.25}}) G0 = G0PESIPES_ResponseFunction[2] + ResponseFunction.InvertEnergy(G0PESIPES_ResponseFunction[1]) Eigensystem(H0+H1, psiList[1]) -- Use H0 groundstate as Ansatz for Full Hamiltonian groundstate calculation --For memory efficiency, this way of calling Eigensystem overwrites Ansatz wavefunction with a new one. GPESIPES_Spectra, GPESIPES_ResponseFunction = CreateSpectra(H0+H1, {TPes, TIPes}, psiList[1], {{"Emin",-1}, {"Emax",9}, {"NE",1000}, {"Gamma",0.25}}) G = GPESIPES_ResponseFunction[2] + ResponseFunction.InvertEnergy(GPESIPES_ResponseFunction[1]) Sigma = ResponseFunction.CalculateSelfEnergy(G0,G) print(ResponseFunction.ToTable(Sigma))
Result
{ { 0.5 , 6.9374060711003e-16 , 3.0413812651491 } , { 0.085601012694643 , 0.16439898730536 } , name = Self energy , mu = 0 , type = ListOfPoles }
Table of contents
-