This is an old revision of the document!


InvertEnergy

InvertEnergy(G) takes response function $G(\omega)$ as an argument and returns $G(-\omega)$.

Example

This example initializes a response function in the “list of poles” representation and inverts its energy.

Input

Example.Quanty
NEDOS   = 10
HalfBW = 1
dE =HalfBW/NEDOS
 
a = {0}
b = {}
 
for i=1,NEDOS do
  a[#a+1] = (i-0.5) * dE -- energy axis from 0 to 1
  b[#b+1] = 0.5 -- flat density of states
end
 
G0 = ResponseFunction.New( {a,b,mu=0,type="ListOfPoles", name="G0"} )
G0_inv = ResponseFunction.InvertEnergy(G0)
 
print(G0)
print(G0_inv)

Result

{ { 0 , 0.05 , 0.15 , 0.25 , 0.35 , 0.45 , 0.55 , 0.65 , 0.75 , 0.85 , 0.95 } , 
  { 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 } ,
  mu = 0 ,
  name = G0 ,
  type = ListOfPoles }
{ { 0 , -0.05 , -0.15 , -0.25 , -0.35 , -0.45 , -0.55 , -0.65 , -0.75 , -0.85 , -0.95 } , 
  { 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 } ,
  mu = 0 ,
  name = G0 ,
  type = ListOfPoles }

Table of contents

Print/export